ABSTRACT
Objective This study aims to address disparities in risk prediction by evaluating the performance of polygenic risk score (PRS) models using the 90 risk variants across 78 independent loci previously linked to Parkinson’s disease (PD) risk across seven diverse ancestry populations.
Methods We conducted a multi-stage study, testing PRS models in predicting PD status across seven different ancestries applying three approaches: 1) PRS adjusted by gender and age; 2) PRS adjusted by gender, age and principal components (PCs); and 3) PRS adjusted by gender, age and percentage of population admixture. These models were built using the largest four population-specific summary statistics of PD risk to date (base data) and individual level data obtained from the Global Parkinson’s Genetics Program (target data). We performed power calculations to estimate the minimum sample size required to conduct these analyses. A total of 91 PRS models were developed to investigate cumulative known genetic variation associated with PD risk and age of onset in a global context.
Results We observed marked heterogeneity in risk estimates across non-European ancestries, including East Asians, Central Asians, Latino/Admixed Americans, Africans, African admixed, and Ashkenazi Jewish populations. Risk allele patterns for the 90 risk variants yielded significant differences in directionality, frequency, and magnitude of effect. PRS did not improve in performance when predicting disease status using similar base and target data across multiple ancestries, demonstrating that cumulative PRS models based on current known risk are inherently biased towards European populations. We found that PRS models adjusted by percentage of admixture outperformed models that adjusted for conventional PCs in highly admixed populations. Overall, the clinical utility of our models in individually predicting PD status is limited in concordance with the estimates observed in European populations.
Interpretation This study represents the first comprehensive assessment of how PRS models predict PD risk and age at onset in a multi-ancestry fashion. Given the heterogeneity and distinct genetic architecture of PD across different populations, our assessment emphasizes the need for larger and diverse study cohorts of individual-level target data and well-powered ancestry-specific summary statistics. Our current understanding of PD status unraveled through GWAS in European populations is not generally applicable to other ancestries. Future studies should integrate clinical and *omics level data to enhance the accuracy and predictive power of PRS across diverse populations.
Competing Interest Statement
MAN. and HL.s participation in this project was part of a competitive contract awarded to Data Tecnica International LLC by the National Institutes of Health to support open science research. MAN. also currently serves on the scientific advisory board for Character Bio Inc. and Neuron23 Inc. L.N.K and K.H. are employed by and hold stock or stock options in 23andMe, Inc.
Funding Statement
This work was carried out with the support and guidance of the GP2 Trainee Network which is part of the Global Parkinsons Genetics Program and funded by the Aligning Science Across Parkinsons (ASAP) initiative. Data used in the preparation of this article were obtained from Global Parkinsons Genetics Program (GP2). GP2 is funded by the Aligning Science Across Parkinsons (ASAP) initiative and implemented by The Michael J. Fox Foundation for Parkinsons Research (https://gp2.org). For a complete list of GP2 members see https://gp2.org. Additional funding was provided by The Michael J. Fox Foundation for Parkinsons Research through grant MJFF-009421/17483. This research was supported in part by the Intramural Research Program of the NIH, National Institute on Aging (NIA), National Institutes of Health, Department of Health and Human Services; project number ZIAAG000534, as well as the National Institute of Neurological Disorders and Stroke. This work utilized the computational resources of the NIH HPC Biowulf cluster. (http://hpc.nih.gov) We are grateful to the Banner Sun Health Research Institute Brain and Body Donation Program of Sun City, Arizona for the provision of human biological materials. The Brain and Body Donation Program has been supported by the National Institute of Neurological Disorders and Stroke (U24 NS072026 National Brain and Tissue Resource for Parkinsons Disease and Related Disorders), the National Institute on Aging (P30 AG19610 and P30AG072980, Arizona Alzheimers Disease Center), the Arizona Department of Health Services (contract 211002, Arizona Alzheimers Research Center), the Arizona Biomedical Research Commission (contracts 4001, 0011, 05-901 and 1001 to the Arizona Parkinsons Disease Consortium) and the Michael J. Fox Foundation for Parkinsons Research.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
were obtained from the Global Parkinsons Genetics Program (GP2) and can be accessed at amp-pd.org. GP2 data is accessible through a partnership with the Accelerating Medicines Partnership in Parkinsons Disease (ASAP) and can be requested via the websites application process at https://www.amp-pd.org. GWAS summary statistics from GP2s release 5 are available for all datasets (DOI 10.5281/zenodo.7904832, release 5).
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data and Code Availability
Data were obtained from the Global Parkinson’s Genetics Program (GP2) and is accessible through a partnership with the Accelerating Medicines Partnership in Parkinson’s Disease (AMP-PD) and can be requested via the website’s application process (https://www.amp-pd.org/). GWAS summary statistics from GP2’s release 5 are available for all datasets (release 5; doi:10.5281/zenodo.7904832). 23andMe summary statistics is available upon application through their website (https://research.23andme.com/dataset-access/). GenoTools (version 10; https://github.com/GP2code/GenoTools) was used for genotyping, imputation, quality control, ancestry prediction, and data processing. A secured workspace on the Terra platform was created to conduct genetic analyses using GP2 release 5 data and summary statistics (https://app.terra.bio/). Additionally, all scripts used for this study can be found in the public domain on GitHub (https://github.com/GP2code/GP2-Multiancestry-PRS; doi:10.5281/zenodo.10211779).