ABSTRACT
As the COVID-19 pandemic reached its peak, many countries implemented genomic surveillance systems to track the evolution and transmission of SARS-CoV-2. Transition from the pandemic to the endemic phase prioritized alternative testing strategies to maintain effective epidemic surveillance at the population level, with less intensive sequencing efforts. One such promising approach was Wastewater-Based Surveillance (WBS), which offers non-invasive, cost-effective means for analysing virus trends at the sewershed level. From 2020 onwards, wastewater has been recognized as an instrumental source of information for public health, with national and international authorities exploring options to implement national wastewater surveillance systems and increasingly relying on WBS as early warning of potential pathogen outbreaks. In Portugal, several pioneer projects joined the academia, water utilities and Public Administration around WBS.
To validate WBS as an effective genomic surveillance strategy, it is crucial to collect long term performance data. In this work, we present one year of systematic SARS-CoV-2 wastewater surveillance in Portugal, representing 35% of the mainland population. We employed two complementary methods for lineage determination - allelic discrimination by RT-PCR and S gene sequencing. This combination allowed us to monitor variant evolution in near-real-time and identify low-frequency mutations.
Over the course of this year-long study, spanning from May 2022 to April 2023, we successfully tracked the dominant Omicron sub-lineages, their progression and evolution, which aligned with concurrent clinical surveillance data. Our results underscore the effectiveness of WBS as a tracking system for virus variants, with the ability to unveil mutations undetected via massive sequencing of clinical samples from Portugal, demonstrating the ability of WBS to uncover new mutations and detect rare genetic variants.
Our findings emphasize that knowledge of the genetic diversity of SARS-CoV-2 at the population level can be extended far beyond via the combination of routine clinical genomic surveillance with wastewater sequencing and genotyping.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported by the European Union through the Emergency Support Instrument [Support to the Member States to establish national systems, local collection points, and digital infrastructure for monitoring Covid19 and its variants in wastewater, Portugal; Grant Agreement No. 060701/2021/864489/SUB/ENV.C2], Fundo Ambiental (MAAC), and Fundacao para a Ciencia e a Tecnologia, IP [institutional support to cE3c (UIDB/00329/2020); BioISI (UIDB/04046/2020); and CHANGE (LA/P/0121/2020)].
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
All data produced in the present study are contained in the manuscript or are available upon reasonable request to the authors