Abstract
Transcriptome-wide association studies (TWAS) have been successful in identifying disease susceptibility genes by integrating cis-variants predicted gene expression with genome-wide association studies (GWAS) data. However, trans-located variants for predicting gene expression remain largely unexplored. Here, we introduce transTF-TWAS, which incorporates transcription factor (TF)-linked trans-located variants to enhance model building. Using data from the Genotype-Tissue Expression project, we predict gene expression and alternative splicing and applied these models to large GWAS datasets for breast, prostate, and lung cancers. We demonstrate that transTF-TWAS outperforms other existing TWAS approaches in both constructing gene prediction models and identifying disease-associated genes, as evidenced by simulations and real data analysis. Our transTF-TWAS approach significantly contributes to the discovery of disease risk genes. Findings from this study have shed new light on several genetically driven key regulators and their associated regulatory networks underlying disease susceptibility.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This research was supported by the grant from US National Institutes of Health grant R37 CA227130 and CA269589-01A1 to X.G.. A New Frontiers in Research Fund (NFRFE-2023-00291) and a Natural Sciences and Engineering Research Council (RGPIN-2024-04679) to Q.L.. J.H. was partly supported by the China Scholarship Council (CSC). D.P. was supported by an Alberta Innovates and an Eyes High scholarship. The computational infrastructure was partly supported by a Canada Foundation for Innovation JELF grant (36605).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Gene expression and alternative splicing data generated in breast, prostate, lung and brain tissues, were downloaded from GTEx consortium, and the individual-level genotype was downloaded from dbGaP (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v8.p2). Gencode annotation (v26.GRCh38) was downloaded from https://www.gencodegenes.org/human/release_26.html. The data from the 1000 Genomes Project data was downloaded through the website, https://www.genome.gov/27528684/1000-genomes-project. Table S1 provides the detail information for all downloaded datasets.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.