Algorithms for the identification of prevalent diabetes in the All of Us Research Program validated using polygenic scores – a new resource for diabetes precision medicine
View ORCID ProfileLukasz Szczerbinski, View ORCID ProfileRavi Mandla, View ORCID ProfilePhilip Schroeder, Bianca C. Porneala, View ORCID ProfileJosephine H. Li, View ORCID ProfileJose C. Florez, View ORCID ProfileJosep M. Mercader, View ORCID ProfileAlisa K. Manning, View ORCID ProfileMiriam S. Udler
doi: https://doi.org/10.1101/2023.09.05.23295061
Lukasz Szczerbinski
1Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
2Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
3Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, USA
4Center for Genomic Medicine, Massachusetts General Hospital, Boston, USA
5Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, USA
Ravi Mandla
3Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, USA
4Center for Genomic Medicine, Massachusetts General Hospital, Boston, USA
5Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, USA
6Cardiology Division, Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, USA
Philip Schroeder
3Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, USA
4Center for Genomic Medicine, Massachusetts General Hospital, Boston, USA
5Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, USA
Bianca C. Porneala
7Division of General Internal Medicine, Department of Medicine, Massachusetts General Hospital, Boston, USA
Josephine H. Li
3Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, USA
4Center for Genomic Medicine, Massachusetts General Hospital, Boston, USA
5Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, USA
8Department of Medicine, Harvard Medical School, Boston, MA, USA
Jose C. Florez
3Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, USA
4Center for Genomic Medicine, Massachusetts General Hospital, Boston, USA
5Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, USA
8Department of Medicine, Harvard Medical School, Boston, MA, USA
Josep M. Mercader
3Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, USA
4Center for Genomic Medicine, Massachusetts General Hospital, Boston, USA
5Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, USA
8Department of Medicine, Harvard Medical School, Boston, MA, USA
Alisa K. Manning
3Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, USA
4Center for Genomic Medicine, Massachusetts General Hospital, Boston, USA
8Department of Medicine, Harvard Medical School, Boston, MA, USA
9Clinical and Translational Epidemiology Unit, Department of Medicine, Massachusetts General Hospital, Boston, USA
Miriam S. Udler
3Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, USA
4Center for Genomic Medicine, Massachusetts General Hospital, Boston, USA
5Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, USA
8Department of Medicine, Harvard Medical School, Boston, MA, USA
Article usage
Posted September 05, 2023.
Algorithms for the identification of prevalent diabetes in the All of Us Research Program validated using polygenic scores – a new resource for diabetes precision medicine
Lukasz Szczerbinski, Ravi Mandla, Philip Schroeder, Bianca C. Porneala, Josephine H. Li, Jose C. Florez, Josep M. Mercader, Alisa K. Manning, Miriam S. Udler
medRxiv 2023.09.05.23295061; doi: https://doi.org/10.1101/2023.09.05.23295061
Algorithms for the identification of prevalent diabetes in the All of Us Research Program validated using polygenic scores – a new resource for diabetes precision medicine
Lukasz Szczerbinski, Ravi Mandla, Philip Schroeder, Bianca C. Porneala, Josephine H. Li, Jose C. Florez, Josep M. Mercader, Alisa K. Manning, Miriam S. Udler
medRxiv 2023.09.05.23295061; doi: https://doi.org/10.1101/2023.09.05.23295061
Subject Areas
- Addiction Medicine (405)
- Allergy and Immunology (714)
- Anesthesia (209)
- Cardiovascular Medicine (2986)
- Dermatology (254)
- Emergency Medicine (446)
- Epidemiology (12847)
- Forensic Medicine (12)
- Gastroenterology (839)
- Genetic and Genomic Medicine (4652)
- Geriatric Medicine (428)
- Health Economics (735)
- Health Informatics (2960)
- Health Policy (1076)
- Hematology (394)
- HIV/AIDS (938)
- Medical Education (430)
- Medical Ethics (116)
- Nephrology (478)
- Neurology (4441)
- Nursing (239)
- Nutrition (653)
- Oncology (2310)
- Ophthalmology (655)
- Orthopedics (260)
- Otolaryngology (328)
- Pain Medicine (285)
- Palliative Medicine (85)
- Pathology (504)
- Pediatrics (1205)
- Primary Care Research (506)
- Public and Global Health (7039)
- Radiology and Imaging (1557)
- Respiratory Medicine (927)
- Rheumatology (447)
- Sports Medicine (387)
- Surgery (494)
- Toxicology (60)
- Transplantation (213)
- Urology (186)