ABSTRACT
Objective The United States Medical Licensing Examination (USMLE) assesses physicians’ competency and passing is a requirement to practice medicine in the U.S. With the emergence of large language models (LLMs) like ChatGPT and GPT-4, understanding their performance on these exams illuminates their potential in medical education and healthcare.
Materials and Methods A literature search following the 2020 PRISMA guidelines was conducted, focusing on studies using official USMLE questions and publicly available LLMs.
Results Three relevant studies were found, with GPT-4 showcasing the highest accuracy rates of 80-90% on the USMLE. Open-ended prompts typically outperformed multiple-choice ones, with 5-shot prompting slightly edging out zero-shot.
Conclusion LLMs, especially GPT-4, display proficiency in tackling USMLE-standard questions. While the USMLE is a structured evaluation tool, it may not fully capture the expansive capabilities and limitations of LLMs in medical scenarios. As AI integrates further into healthcare, ongoing assessments against trusted benchmarks are essential.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study did not receive any funding
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
1. References numbers and list 2.corrected a typo 3. updated tables and figures
Data Availability
All data produced in the present study are available upon reasonable request to the authors