Abstract
Precise stress recognition from biosignals is in-herently challenging due to the heterogeneous nature of stress, individual physiological differences, and scarcity of labeled data. To address these issues, we developed SIM-CNN, a self-supervised learning (SSL) method for personalized stress-recognition models using multimodal biosignals. SIM-CNN involves training a multimodal 1D convolutional neural network (CNN) that leverages SSL to utilize massive unlabeled data, optimizing individual parameters and hyperparameters for precision health. SIM-CNN is evaluated on a real-world multimodal dataset collected from nurses that consists of 1,250 hours of biosignals, 83 hours of which are explicitly labeled with stress levels. SIM-CNN is pre-trained on the unlabeled biosignal data with next-step time series forecasting and fine-tuned on the labeled data for stress classification. Compared to SVMs and baseline CNNs with an identical architecture but without self-supervised pre-training, SIM-CNN shows clear improvements in the average AUC and accuracy, but a further examination of the data also suggests some intrinsic limitations of patient-specific stress recognition using biosignals recorded in the wild.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study did not receive any funding.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
Proceedings of the 40th International Conference on Machine Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright 2023 by the author(s).
Data Availability
We used a publicly available dataset published in Nature Scientific Data.