Predicting the onset of internalizing disorders in early adolescence using deep learning optimized with AI
View ORCID ProfileNina de Lacy, Michael J. Ramshaw
doi: https://doi.org/10.1101/2023.08.21.23294377
Nina de Lacy
1Huntsman Mental Health Institute, Salt Lake City, UT 84103
2Department of Psychiatry, University of Utah, Salt Lake City, UT 84103
MD, MBAMichael J. Ramshaw
1Huntsman Mental Health Institute, Salt Lake City, UT 84103
2Department of Psychiatry, University of Utah, Salt Lake City, UT 84103
MSArticle usage
Posted August 22, 2023.
Predicting the onset of internalizing disorders in early adolescence using deep learning optimized with AI
Nina de Lacy, Michael J. Ramshaw
medRxiv 2023.08.21.23294377; doi: https://doi.org/10.1101/2023.08.21.23294377
Subject Area
Subject Areas
- Addiction Medicine (401)
- Allergy and Immunology (712)
- Anesthesia (204)
- Cardiovascular Medicine (2965)
- Dermatology (250)
- Emergency Medicine (444)
- Epidemiology (12782)
- Forensic Medicine (12)
- Gastroenterology (829)
- Genetic and Genomic Medicine (4610)
- Geriatric Medicine (423)
- Health Economics (732)
- Health Informatics (2939)
- Health Policy (1070)
- Hematology (391)
- HIV/AIDS (927)
- Medical Education (429)
- Medical Ethics (116)
- Nephrology (474)
- Neurology (4392)
- Nursing (237)
- Nutrition (646)
- Oncology (2284)
- Ophthalmology (650)
- Orthopedics (258)
- Otolaryngology (326)
- Pain Medicine (279)
- Palliative Medicine (83)
- Pathology (502)
- Pediatrics (1199)
- Primary Care Research (501)
- Public and Global Health (6981)
- Radiology and Imaging (1539)
- Respiratory Medicine (917)
- Rheumatology (443)
- Sports Medicine (385)
- Surgery (491)
- Toxicology (60)
- Transplantation (212)
- Urology (182)