Abstract
Volitional movement requires descending input from motor cortex and sensory feedback through the spinal cord. We previously developed a paired brain and spinal electrical stimulation approach in rats that relies on convergence of the descending motor and spinal sensory stimuli in the cervical cord. This approach strengthened sensorimotor circuits and improved volitional movement through associative plasticity. In humans it is not known whether dorsal epidural SCS targeted at the sensorimotor interface or anterior epidural SCS targeted within the motor system is effective at facilitating brain evoked responses. In 59 individuals undergoing elective cervical spine decompression surgery, the motor cortex was stimulated with scalp electrodes and the spinal cord with epidural electrodes while muscle responses were recorded in arm and leg muscles. Spinal electrodes were placed either posteriorly or anteriorly, and the interval between cortex and spinal cord stimulation was varied. Pairing stimulation between the motor cortex and spinal sensory (posterior) but not spinal motor (anterior) stimulation produced motor evoked potentials that were over five times larger than brain stimulation alone. This strong augmentation occurred only when descending motor and spinal afferent stimuli were timed to converge in the spinal cord. Paired stimulation also increased the selectivity of muscle responses relative to unpaired brain or spinal cord stimulation. Finally, paired stimulation effects were present regardless of the severity of myelopathy as measured by clinical signs or spinal cord imaging. The large effect size of this paired stimulation makes it a promising candidate for therapeutic neuromodulation.
Competing Interest Statement
Jason B. Carmel is a Founder and stock holder in BackStop Neural and a scientific advisor and stockholder in SharperSense. He has received honoraria from Pacira, Motric Bio, and Restorative Therapeutics. Michael S. Virk has been a consultant and has received honorarium from Depuy Synthes and BrainLab Inc; he is on the Medical Advisory Board and owns stock with OnPoint Surgical. K. Daniel Riew: Consulting: Happe Spine (Nonfinancial), Nuvasive; Royalties: Biomet, Nuvasive; Speaking and/or Teaching Arrangements: Nuvasive (Travel Expense Reimbursement); Stock Ownership: Amedica, Axiomed, Benvenue, Expanding Orthopedics, Happe Spine, Paradigm Spine, Spinal Kinetics, Spineology, Vertiflex. Ronald A. Lehman: Consulting: Medtronic; Royalties: Medtronic, Stryker. Zeeshan M. Sardar: Consulting: Medtronic; Grant/Research support from the Department of Defense. Joseph M. Lombardi: Consulting: Medtronic, Stryker. The other authors have nothing to disclose.
Clinical Trial
NCT05163639
Funding Statement
This study was funded by the National Institutes of Health (1R01NS124224); and the Travis Roy Foundation Boston, MA (Investigator Initiated).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
IRBs of Columbia University Irving Medical Center and Weill Cornell Medicine gave ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
A figure illustrating that activation of muscles is most selective near optimum inter-stimulus intervals has been added. The background section of the introduction has been extended to cover non-invasive studies of brain-spine convergence. Supplemental figures have been integrated into main manuscript file.
5.5 Data availability statement
The data that support the findings of this study are available from the corresponding authors, upon reasonable request.
Abbreviations
- ADM
- abductor digiti minimi
- AH
- Abductor Hallucis
- APB
- abductor pollicis brevis
- AUC
- Area Under the Curve
- DREZ
- dorsal root entry zone
- ECR
- extensor carpi radialis
- EDB
- Extensor Digitorum Brevis
- SCS
- spinal cord stimulation
- FCR
- flexor carpi radialis
- mJOA
- Modified Japanese Orthopaedic Association
- MEP
- Motor Evoked Potential
- SEM
- Standard Error of the Mean
- TA
- Tibialis Anterior
- tES
- transcranial electrical stimulation.