Abstract
Intracranial pressure (ICP) data from traumatic brain injury (TBI) patients in the intensive care unit (ICU) cannot be interpreted appropriately without accounting for the effect of administered therapy intensity level (TIL) on ICP. A 15-point scale was originally proposed in 1987 to quantify the hourly intensity of ICP-targeted treatment. This scale was subsequently modified – through expert consensus – during the development of TBI Common Data Elements to address statistical limitations and improve usability. The latest, 38-point scale (hereafter referred to as TIL) permits integrated scoring for a 24- hour period and has a five-category, condensed version (TIL(Basic)) based on qualitative assessment. Here, we perform a total- and component-score analysis of TIL and TIL(Basic) to: (1) validate the scales across the wide variation in contemporary ICP management, (2) compare their performance against that of predecessors, and (3) derive guidelines for proper scale use. From the observational Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) study, we extract clinical data from a prospective cohort of ICP-monitored TBI patients (n=873) from 52 ICUs across 19 countries. We calculate daily TIL and TIL(Basic) scores (TIL24 and TIL(Basic)24, respectively) from each patient’s first week of ICU stay. We also calculate summary TIL and TIL(Basic) scores by taking the first-week maximum (TILmax and TIL(Basic)max) and first-week median (TILmedian and TIL(Basic)median) of TIL24 and TIL(Basic)24 scores for each patient. We find that, across all measures of construct and criterion validity, the latest TIL scale performs significantly greater than or similarly to all alternative scales (including TIL(Basic)) and integrates the widest range of modern ICP treatments. TILmedian outperforms both TILmax and summarised ICP values in detecting refractory intracranial hypertension (RICH) during ICU stay. The RICH detection thresholds which maximise the sum of sensitivity and specificity are TILmedian≥7.5 and TILmax≥14. The TIL24 threshold which maximises the sum of sensitivity and specificity in the detection of surgical ICP control is TIL24≥9. The median scores of each TIL component therapy over increasing TIL24 reflect a credible staircase approach to treatment intensity escalation, from head positioning to surgical ICP control, as well as considerable variability in the use of cerebrospinal fluid drainage and decompressive craniectomy. Since TIL(Basic)max suffers from a strong statistical ceiling effect and only covers 17% (95% CI: 16–18%) of the information in TILmax, TIL(Basic) should not be used instead of TIL for rating maximum treatment intensity. TIL(Basic)24 and TIL(Basic)median can be suitable replacements for TIL24 and TILmedian, respectively (with up to 33% [95% CI: 31–35%] information coverage) when TIL assessment is infeasible. Accordingly, we derive numerical ranges for categorising TIL24 scores into TIL(Basic)24 scores. In conclusion, our results validate TIL across a spectrum of ICP management and monitoring approaches. TIL is a more sensitive surrogate for pathophysiology than ICP and thus can be considered an intermediate outcome after TBI.
Introduction
Elevated intracranial pressure (ICP) following traumatic brain injury (TBI) may impede the potential recovery of injured brain tissue and damage initially unaffected brain regions.1 Therefore, for TBI patients admitted to the intensive care unit (ICU), clinicians often monitor ICP and apply a wide range of ICP-reducing treatments.2 The selective use of these treatments typically follows a staircase approach, in which therapeutic intensity – defined by the risk and complexity of each treatment – is incrementally escalated until adequate ICP control is achieved.3–5 Thus, therapeutic intensity must be considered when interpreting ICP. Even if two TBI patients have comparable ICP values, a difference in the intensity of their ICP-directed therapies likely indicates a difference in pathophysiological severity.
Several versions of the Therapy Intensity Level (TIL) scale have been developed to rate and compare the overall intensity of ICP management amongst TBI patients. TIL scales assign a relative intensity score to each ICP-targeting therapy and return either the sum or the maximum value of the scores of simultaneously applied therapies. In 1987, Maset et al. produced the original, 15-point TIL scale (TIL(1987)) to be assessed once every four hours.6 In 2006, Shore et al. published the 38-point Paediatric Intensity Level of Therapy (PILOT) scale,7 revising TIL(1987) to: (1) represent updated paediatric TBI management practices, (2) have a more practical, daily assessment frequency, and (3) resolve a statistical ceiling effect. In 2011, the interagency TBI Common Data Elements (CDE) scheme developed the most recent, 38-point TIL scale (hereafter referred to as TIL) as well as a condensed, five-category TIL(Basic) scale through expert consensus.8 The TIL scale revised PILOT to integrate additional ICP-directed therapies and to be applicable to adult TBI management. Moreover, TIL(Basic) was proposed as a simple, categorical measure to use when full TIL assessment would be infeasible. Since Zuercher et al. reported the validity and reliability of TIL in a two-centre cohort (n=31) in 2016,9 the scale has become a popular research metric for quantifying ICP treatment intensity.10–13
However, several critical questions regarding TIL remain unanswered. It is uncertain whether the validity of TIL, reported in a relatively small population, can be generalised across the wide variation of ICP management, monitoring, and data acquisition (i.e., intermittent chart recording or high-resolution storage14) strategies practised in contemporary intensive care.11,12,15,16 Furthermore, the scoring configuration of TIL has never been tested against alternatives (e.g., TIL(1987) and PILOT), and the relative contribution of TIL’s component therapies towards the total score is unknown. It is unclear how TIL(Basic) numerically relates to TIL and if the former captures the essential information of the latter. In this work, we aimed to answer these questions by performing a comprehensive assessment of TIL on a large, contemporary population of ICP-monitored TBI patients across European ICUs.
Materials and Methods
Therapy intensity level (TIL) and alternative scales
TIL refers to the 38-point scale developed by the CDE scheme for TBI.8 The domain or construct (i.e., targeted concept of a scale) of TIL is the therapeutic intensity of ICP management. The TIL scale has twelve items, each representing a distinct ICP-targeting treatment from one of eight modalities, as defined in Table 1. TIL was developed by an international expert panel which discussed: (1) the relevant ICP-treatment modalities of modern intensive care, (2) the relative risk and efficacy of individual therapies to derive scores, and (3) practical and statistical limitations of previous TIL scores.8 In this way, TIL is a formative measurement model, in which the construct (i.e., ICP treatment intensity) is not unidimensional but rather defined by the combination of items (i.e., ICP-targeting treatments).17 TIL was shown to have high interrater and intrarater reliability by Zuercher et al.9 If a decompressive craniectomy was performed as a last resort for refractory intracranial hypertension, its score was included in the day of the operation and in every subsequent day of ICU stay. TIL scores can be calculated as frequently as clinically desired. For our analysis, we calculated the following TIL scores from the first seven days of ICU stay:
TIL24, the daily TIL score based on the sum of the highest scores per item per calendar day,
TILmax, the maximum TIL24 over the first week of a patient’s ICU stay,
TILmedian, the median TIL24 over the first week of a patient’s ICU stay.
We also calculated scores from four other therapeutic intensity scales to compare with TIL scores. The 21-point, unweighted TIL (uwTIL) scale replaces each sub-item score in TIL with its ascending rank index (i.e., 1, 2, 3, …) within each item (Table 1). The five- category TIL(Basic) was also developed by the CDE scheme for TBI and takes the maximum score, from zero (i.e., no ICP-related intervention) to four, amongst all included sub-items over the calendar day.8 We adapted the 38-point PILOT7 and 15-point TIL(1987) scales6 with minor adjustments to fit the items of TIL with a daily assessment frequency. PILOT was also shown to have high interrater and intrarater reliability by Shore et al.7 For the four alternative scales, daily (i.e., uwTIL24, TIL(Basic)24, PILOT24, and TIL(1987)24), maximum (i.e., uwTILmax, TIL(Basic)max, PILOTmax, and TIL(1987)max), and median (i.e., uwTILmedian, TIL(Basic)median, PILOTmedian, and TIL(1987)median) scores were calculated in the same way as TIL24, TILmax, and TILmedian, respectively.
Study design and populations
Our study population was prospectively recruited for the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) core and high-resolution studies. CENTER-TBI is a longitudinal, observational cohort study (NCT02210221) involving 65 medical centres across 18 European countries and Israel. Patients were recruited between 19 December 2014 and 17 December 2017 if they met the following criteria: (1) presentation within 24 hours of a TBI, (2) clinical indication for a CT scan, and (3) no severe pre-existing neurological disorder. In accordance with relevant laws of the European Union and the local country, ethical approval was obtained for each site, and written informed consent by the patient or legal representative was documented electronically. The list of sites, ethical committees, approval numbers, and approval dates can be found online: https://www.center-tbi.eu/project/ethical-approval. The project objectives and design of CENTER-TBI have been described in detail previously.18,19
In this work, we applied the following inclusion criteria in addition to those of CENTER- TBI (Fig. 1): (1) primary admission to the ICU, (2) at least 16 years old at ICU admission, (3) invasive ICP monitoring, (4) no decision to withdraw life-sustaining therapies (WLST) on the first day of ICU stay, and (5) daily assessment of TIL.
For our sub-studies evaluating the association between TIL and ICP-derived values, we created two sub-populations based on the type of ICP values available. Patients with end- hour ICP (ICPEH) values, which were recorded by clinicians at the end of every other hour, constituted the TIL-ICPEH sub-population. Patients with high-resolution ICP values (ICPHR), which were automatically stored with monitoring software, constituted the TIL- ICPHR sub-population. All patients in the TIL-ICPHR sub-population were also members of the TIL-ICPEH sub-population (Fig. 1).
Data collection
Data for the CENTER-TBI study was collected through the QuesGen electronic case report form system (QuesGen Systems Inc, Burlingame, CA, USA) hosted on the International Neuroinformatics Coordinating Facility (INCF) platform (INCF, Stockholm, Sweden). All data for the validation populations, except high-resolution signals, were extracted from the CENTER-TBI core study19 (v3.0, ICU stratum) using Opal database software.20
ICP management data for TIL calculation
Since TIL24 was found to be a reliable summary of hourly TIL,9 clinical data pertinent to the component items of TIL (i.e., ICP-guided treatments, Table 1) were recorded daily through the first week of ICU stay. We extracted all daily TIL item values for our population, and calculated TIL24, uwTIL24, TIL(Basic)24, PILOT24, and TIL(1987)24 as defined in Table 1. For patients who underwent WLST after the first day of ICU stay, we only extracted TIL item information from before the documented date of WLST decision.
ICPEH and related values
End-hour ICP (ICPEH), systolic blood pressure (SBPEH), and diastolic blood pressure (DBPEH) were recorded by clinicians every two hours for the TIL-ICPEH sub-population. Mean arterial pressure (MAPEH) was calculated as MAPEH = (SBPEH + 2DBPEH)/3, and cerebral perfusion pressure (CPPEH) was calculated as CPPEH = MAPEH – ICPEH. From ICPEH and CPPEH, we calculated the following values:
ICP24 or CPP24, the mean ICP or CPP value over a calendar day of ICU stay,
ICPmax or CPPmin, the maximum ICP24 or minimum CPP24 value over the first week of a patient’s ICU stay,
ICPmedian or CPPmedian, the median ICP24 or CPP24 value over the first week of a patient’s ICU stay.
ICPHR and related values
High-resolution signals were collected using either ICM+ software (Cambridge Enterprise Ltd, Cambridge, UK; http://icmplus.neurosurg.cam.ac.uk), Moberg CNS monitor (Moberg Research Inc, Ambler, PA, USA; https://www.moberg.com), or both. Blood pressure was obtained through arterial lines connected to pressure transducers. High-resolution ICP (ICPHR) was acquired from either an intraparenchymal strain gauge probe (Codman ICP MicroSensor, Codman & Shurtleff Inc, Raynham, MA, USA), a parenchymal fibre optic pressure sensor (Camino ICP Monitor, Integra Life Sciences, Plainsboro, NJ, USA; https://www.integralife.com/), or an external ventricular drain. Detailed data collection and pre-processing methods (i.e., artefact cleaning and down-sampling to ten-second averaged time series) applied to high resolution signals in our study have been described previously.21 Ten-second averaged ICP (ICPHR_10sec) and CPP (CPPHR_10sec) time-series were retrieved for this analysis, and, from ICPHR_10sec and CPPHR_10s, we calculated ICP24/CPP24, ICPmax/CPPmin, and ICPmedian/CPPmedian as described above.
Physician impressions
Attending ICU physicians were asked to record their daily concerns with the patient’s ICP and CPP, separately, on a scale from one (not concerned) to ten (most concerned). Moreover, on each patient’s ICU discharge summary, physicians were asked to record whether the patient experienced refractory intracranial hypertension during his or her ICU stay. Refractory intracranial hypertension was defined as recurrent, sustained (i.e., of at least ten minutes) increases of ICP above 20 mmHg despite medical ICP management. We extracted the daily ICP/CPP concern ratings and refractory intracranial hypertension impressions which coincided with the ICU stays of our population.
Baseline characteristics, prognosis, and outcome
We extracted baseline demographic characteristics, Marshall CT classifications,22 and Glasgow Coma Scale (GCS)23 scores from ICU admission.24 We also extracted Glasgow Outcome Scale – Extended (GOSE) functional outcome scores at six months post- injury,25 with imputation of missing values as previously described.26 Finally, we extracted ordinal functional outcome prognosis scores, calculated from a tokenised embedding of all available clinical information in the first 24 hours of ICU stay, as described previously.27
Validation
We appraised the validity of TIL according to recommendations of best practice from clinimetric literature.28 Based on the identified domain of TIL, we evaluated the construct and criterion validities of TIL. Our qualitative and quantitative assessments of TIL were performed against those of alternative scoring configurations (Table 1) for comparison.
Construct validity
Construct validity is the extent to which a clinical scale matches expectations of associations with parameters within or outside the identified domain. Construct validity is further broken down into convergent validity (i.e., associations with similar constructs), discriminant validity (i.e., associations with divergent constructs), and differentiation by known groups. In this work, statistical associations between study variables were measured with:
Spearman’s correlation coefficients (ρ) for static (i.e., measured once) variables,
repeated measures correlation coefficients (rrm)29 – interpreted as within-individual strength of association – for longitudinal (i.e., measured over time) variables,
linear mixed effects regression (LMER) coefficients (βLMER) of daily scale scores (e.g., TIL24) when regressing ICP24 or CPP24 on daily scale scores and the day of ICU stay (DayICU), accounting for inter-patient variability with random intercepts. Therefore, βLMER were interpreted as the expected difference in ICP24 or CPP24 per unit increase of daily scale score, independent of time since ICU admission or inter-patient variation.
For convergent validity, we expected therapeutic intensity to correlate at least mildly (i.e., |ρ|≥0.2, |rrm|≥0.2, |βLMER|>0) with markers of injury severity (i.e., baseline GCS and baseline outcome prognoses), functional outcome (i.e., six-month GOSE), clinical concerns of ICP status, and ICP itself. Accordingly, we calculated: (1) ρ values between TILmax and GCS, ordinal prognosis scores, GOSE, and ICPmax, (2) ρ values between TILmedian and GCS, ordinal prognosis scores, GOSE, and ICPmedian, (3) rrm values between TIL24 and physician concern of ICP and ICP24, and (4) βLMER of TIL24 when regressing ICP24 on DayICU and TIL24 (i.e., ICP24∼DayICU+TIL24), accounting for inter-patient variability with random intercepts.
For discriminant validity, we expected therapeutic intensity to be more strongly correlated with ICP and physician concerns of ICP than with CPP and physician concerns of CPP, respectively. Even though CPP control through fluid loading or vasopressor therapy is a component modality of TIL (Table 1), we expected TIL to capture ICP management (i.e., the construct) more accurately than CPP management. We compared: (1) ρ values of TILmax vs. CPPmin to those of TILmax vs. ICPmax, (2) ρ values of TILmedian vs. CPPmedian to those of TILmedian vs. ICPmedian, (3) rrm values of TIL24 vs. CPP24 to those of TIL24 vs. ICP24, and (4) the βLMER of TIL24 when regressing CPP24∼DayICU+TIL24 to the βLMER of TIL24 when regressing ICP24∼DayICU+TIL24.
For differentiation by known groups, we expected TILmax and TILmedian to effectively discriminate patients who experienced refractory intracranial hypertension during ICU stay from those who did not. We calculated the area under the receiver operating characteristic curve (AUC), which, in our case, was interpreted as the probability of a randomly selected patient with refractory intracranial hypertension having a higher TILmax or TILmedian score than one without it. We also compared the AUCs of TILmax and TILmedian to ICPmax and ICPmedian and determined the sensitivity and specificity of refractory intracranial hypertension detection at each threshold of TILmax and TILmedian.
Criterion validity
Criterion (or concurrent) validity is the degree to which there is an association between a clinical scale and other scales measuring the same construct, particularly a gold standard assessment. Since there is no extant “gold standard” for assessing ICP management intensity, we tested the concurrent criterion validity of TIL by calculating its associations with its predecessors (i.e., PILOT and TIL(1987)), mindful of their limitations as described above. More specifically, we calculated: (1) ρ values between TILmax and prior scale maximum scores (i.e., PILOTmax and TIL(1987)max), (2) ρ values between TILmedian and prior scale median scores (i.e., PILOTmedian and TIL(1987)median), and (3) rrm between TIL24 and prior scale daily scores (i.e., PILOT24 and TIL(1987)24).
Component item analysis
We evaluated inter-item (i.e., inter-treatment) and adjusted item-total associations of TIL24, uwTIL24, PILOT24, and TIL(1987)24 by calculating rrm values. Item-total correlations were adjusted by subtracting the tested item score from the total score prior to calculating the correlation. We measured Cronbach’s alpha (α) to assess internal reliability amongst scale items at each day of ICU stay. Moreover, we calculated the median score contribution of each item per total TIL24 score. The association between each TIL24 item score and ICP24, CPP24, physician concern of ICP, and physician concern of CPP was calculated with rrm values. Finally, we trained LMER models regressing ICP24 and CPP24 on all TIL items (with categorical dummy encoding) and DayICU concurrently. The βLMER values from these models were interpreted as the average change in ICP24 or CPP24 associated with each treatment when accounting for all other ICP-guided treatments, time since ICU admission, and inter-patient variability with random intercepts.
TIL(Basic) information coverage
We examined the distributions of TIL(Basic)24 per TIL24 and TIL24 per TIL(Basic)24 to derive thresholds for categorising TIL24 into TIL(Basic)24. We also calculated the information coverage (IC) of TIL(Basic) by dividing the mutual information (MI) of TIL(Basic) and TIL by the entropy of TIL. IC was calculated with TIL(Basic)24 and TIL24 for days one through seven of ICU stay, with TIL(Basic)max and TILmax, and with TIL(Basic)median and TILmedian.
Statistical analysis
Multiple imputation of missing values
Five of the static study variables had missing values for some of the patients in our study: GCS, GOSE, baseline prognosis scores, Marshall CT classifications, and refractory intracranial hypertension status. We assessed the patterns of missingness (Supplementary Fig. S1) and multiply imputed (m=100) these variables with independent, stochastic predictive mean matching functions using the mice package30 (v3.9.0) in R (v4.2.3). We assumed these variables to be missing-at-random (MAR) (as previously reported on CENTER-TBI data31) and supported this assumption by training imputation models on all study measures as well as correlated auxiliary variables (e.g., raised ICP during ICU stay).
For daily longitudinal study variables, we considered a value to be missing if the patient was still in the ICU and WLST had not been decided on or before that day. We assessed the longitudinal patterns of missingness (Supplementary Fig. S2) and multiply imputed (m=100) these variables with the multivariate, time-series algorithm from the Amelia II package32 (v1.7.6) in R over the first week of ICU stay. The algorithm exploits both between-variable and within-variable correlation structures over time to stochastically impute missing time series values in independently trained runs. We validated the MAR assumption by identifying characteristics significantly associated with longitudinal variable missingness (Supplementary Table S1) and included auxiliary information associated with value missingness (e.g., reasons for stopping ICP monitoring) in the imputation model.
Statistical inference
We calculated 95% confidence intervals (CI) for ρ, rrm, βLMER, AUC, sensitivity, specificity, α, and IC values using bootstrapping with 1,000 resamples of unique patients. For each resample, one of the 100 missing value imputations was randomly chosen. Therefore, confidence intervals represented the uncertainty due to patient resampling and missing value imputation.
Code
All statistical analyses were performed in Python (v3.8.2) or R, and all visualisations were created in R. All scripts used in this study are publicly available on GitHub: https://github.com/sbhattacharyay/CENTER-TBI_TIL.
Results
Study population
Of the 4,509 patients available for analysis in the CENTER-TBI core study, 873 patients from 52 ICUs met the additional inclusion criteria of this work. Amongst them, 837 constituted the TIL-ICPEH sub-population and 259 constituted the TIL-ICPHR sub- population (Fig. 1). Summary characteristics of the overall population as well as those of the TIL-ICPEH and TIL-ICPHR sub-populations are detailed in Table 2. Apart from two of the prognosis scores pertaining to the probability of returning to pre-injury life roles (i.e., Pr(GOSE>5) and Pr(GOSE>6)), none of the tested characteristics were significantly different between patients in the TIL-ICPHR sub-population and those outside of it (Table 2).
The median ICU stay duration of our population was 14 days (IQR: 7.8–23 days), and 83% (n=726) stayed through at least seven calendar days. At each day of ICU stay, less than 2.4% of the expected TIL scores were missing (Supplementary Fig. S2). Each TIL component item (Table 1) is represented by at least 17% (n=147, intracranial surgery) and each sub-item is represented by at least 4.9% (n=43, high-dose mannitol) of the population (Supplementary Table S2). The distributions of TILmax, TILmedian, and TIL24, juxtaposed against the scores of alternative scales (Table 1), are displayed in Fig. 2. The distributions of TIL and PILOT were visually similar, and TIL(Basic)max had a strong ceiling effect (i.e., 57% of the population had the maximum score). Whilst there was no significant difference in TIL24 distribution over the first seven days, most patients had their highest TIL24 (i.e., TILmax) soon after ICU admission (median: day two, IQR: days one–three). The Spearman’s rank correlation coefficient (ρ) between TILmax and TILmedian was 0.80 (95% CI: 0.77–0.82), and the median TILmedian:TILmax ratio was 0.65 (IQR: 0.45–0.80).
Validation of TIL
The 95% CIs of ρ values, repeated measures correlation coefficients (rrm), and linear mixed effect regression coefficients (βLMER) of TIL with other study measures are visualised in Fig. 3. Both TILmax and TILmedian had mildly negative correlations (- 0.26<ρmean<-0.19) with baseline GCS, six-month GOSE, and functional outcome prognoses (Fig. 3A–B). The within-individual association of TIL24 with physician concerns of ICP was moderately positive (rrm=0.35 [95% CI: 0.31–0.38]) and significantly higher than that of TIL(Basic)24 (Fig. 3C). The association between ICPmedian and TILmedian was moderately positive (0.35<ρmean<0.45) with both ICPEH and ICPHR values, and the association between ICPmax and TILmax was moderately positive (ρ=0.41 [95% CI: 0.33– 0.46]) with ICPEH values. The ICPmax vs. TILmax correlation was not significant (ρ=0.01 [95% CI: -0.16–0.17]) with ICPHR values; however, without imputing missing ICPHR values, the ρ was 0.43 (95% CI: 0.35–0.50). This suggests that the longitudinal missingness of ICPHR (Supplementary Fig. S2) for our sample size made the ICPmax estimation significantly imprecise. Additionally, the within-individual association with ICP24 was either weak or not significant for any daily scale score according to rrm (Fig. 3C) and βLMER (Fig. 3D) values. On average, a single point increase in TIL24 was associated with a 0.22 (95% CI: 0.15–0.30) mmHg increase in daily mean ICPEH and a 0.19 (95% CI: - 0.06–0.43) mmHg increase in daily mean ICPHR. These results mostly affirm the convergent validity of TIL but highlight the broad intra-patient variability between ICP and therapeutic intensity. From the distribution of ICP24 values at each TIL24 score (Fig. 4A), we observed both considerable ICP24 overlap across each TIL24 score and an overall positive relationship between TIL24 and ICP24, particularly for TIL24≥8.
The correlation between TIL and both prior scales (i.e., PILOT and TIL(1987)) was positively strong for maximum, median, and daily scores (Supplementary Fig. S3), establishing the criterion validity of TIL. According to 95% CIs, the association of TIL with prior scales was stronger than that of uwTIL or TIL(Basic) (Supplementary Fig. S3).
According to ρ, rrm, and βLMER values (Fig. 3), the associations of TIL with CPP and of TIL with physician concerns of CPP were weaker than or not significantly different from the corresponding associations with ICP. Moreover, the trend of CPP24 distributions over different TIL24 scores is not as visually apparent as that of ICP24 distributions over different TIL24 scores (Fig. 4B). These results support the discriminant validity of TIL.
In our population, 157 patients (18% of 864 assessed) were reported to experience refractory intracranial hypertension during ICU stay. TILmax correctly discriminated these patients from the others 81% (95% CI: 78–84%) of the time (Fig. 5A), and TILmedian did so 83% (95% CI: 80–86%) of the time (Fig. 5B). This performance of TIL was significantly greater than or similar to that of all alternative scales (Fig. 5A–B). Furthermore, TILmedian had significantly greater discrimination performance than ICPmax (Fig. 5C) and ICPmedian (Fig. 5D), respectively. The sensitivity and specificity of refractory intracranial hypertension detection at each threshold of TILmax, TILmedian, TIL(Basic)max, and TIL(Basic)median are listed in Supplementary Table S3 and visualised in Fig. 5C–D. The thresholds which maximised the sum of sensitivity and specificity were TILmax≥14 (sensitivity: 68% [95% CI: 62–74%], specificity: 79% [95% CI: 77–81%]) and TILmedian≥7.5 (sensitivity: 81% [95% CI: 77–87%], specificity: 72% [95% CI: 70–75%]) (Table 3).
TIL component items
Whilst there was wide variation in item combinations per TIL24 score (i.e., sum of median scores was often under diagonal line in Fig. 6A), the average order of therapeutic escalation was fairly consistent: position, sedation, CPP management, ventilatory management, neuromuscular blockade, hyperosmolar therapy, temperature control, and then surgery for refractory ICP. Surgical control of ICP occurred in over 50% of reported cases at each TIL24 above 18 (Fig. 6A), but the threshold which maximised the sum of sensitivity and specificity in detecting surgical ICP control was TIL24≥9 (Table 3, performance at each threshold is listed in Supplementary Table S4). The inter-item rrm values of TIL24 (Supplementary Fig. S4) were mostly positive except for cerebrospinal fluid (CSF) drainage, which did not correlate significantly with most other items, and decompressive craniectomy, which did not correlate significantly with CSF, ventilatory, or temperature control. Consistent with Fig. 6A, this result suggested that CSF drainage and decompressive craniectomy were the most variably applied therapies across study ICUs. The Cronbach’s alpha (α) value of TIL24 was, at best, 0.65 (95% CI: 0.62–0.68) and lower (albeit, not significantly) than that of uwTIL24 at each day of ICU stay (Supplementary Fig. S5). However, since TIL is a formative scale (i.e., the construct is multidimensional and defined by the items), high inter-item correlation and α values are not necessary for item validation.17 Amongst all TIL24 items, sedation was most strongly correlated with adjusted TIL24 scores and physician concerns of ICP (Fig. 6B). From 10≤TIL24≤20, a plateau effect of high-dose sedation combined with neuromuscular blockade was observed in most cases (Fig. 6A). When accounting for all other TIL24 sub-items, time since ICU admission, as well as inter-patient variability, ventilation, mannitol administration, and hypertonic saline administration were most strongly associated with ICP24 and vasopressors were most strongly associated with CPP24 (Fig. 6C).
TIL(Basic)
Based on the median TIL(Basic)24 score at each TIL24 score (Fig. 7A), we derived the ranges for mapping TIL24 onto TIL(Basic)24 in Table 3. There is, however, considerable overlap of TIL24 scores across TIL(Basic)24 scores (Fig. 7B), particularly in the range of 6≤TIL24≤10. TIL(Basic)24=3 was not the most represented score at any TIL24 score (Fig. 7A). TIL(Basic)24 covered up to 33% (95% CI: 31–34%) of the information (i.e., entropy) in TIL24, and TIL(Basic)median covered up to 28% (95% CI: 27–30%) of the information in TILmedian (Fig. 7C). TIL(Basic)max only covered 17% (95% CI: 16–18%) of the information in TILmax (Fig. 7C).
Discussion
In this work, we performed a large-scale (n=873), multicentre (52 ICUs, 19 countries), and prospective validation study of TIL and TIL(Basic) against alternative scales. Our results support the validity of TIL as a metric for scoring ICP-directed therapeutic intensity. The dataset we used, as part of the CENTER-TBI study, not only reflects the modern variation in ICP-directed therapeutic intensity (Fig. 2 and Fig. 6A) but also illustrates the practical feasibility of daily TIL assessment: out of 885 eligible patients, 873 (99%) had daily TIL scores (Fig. 1) with less than 2.4% daily missingness (Supplementary Fig. S2).
We scrutinised and validated the use of TIL as a metric for scoring ICP-directed therapeutic intensity and for marking pathophysiological severity. The statistical construct and criterion validity measures of TIL were significantly greater or similar to those of alternative scales (Fig. 3 and Fig. 5), and TIL integrated the widest range of modern ICP treatments (Table 1). Summarised TIL scores outperformed summarised ICP values in detecting refractory intracranial hypertension. Our analysis yielded empirical ranges for interpreting TIL in terms of refractory intracranial hypertension, surgical intervention, and the condensed, TIL(Basic) scores (Table 3). On a component level (Fig. 6A), TIL24 reflected a pattern of treatment intensity escalation consistent with clinical algorithms2,3,5 as well as a wide variation in treatment combinations, particularly in the use of CSF drainage and decompressive craniectomy. This finding is consistent with a previous CENTER-TBI study – which revealed inter-centre variation in TIL treatment selection and time to administration12 – and encourages an investigation of differences in TIL and long-term outcome between centres with known differences in ICP management strategies. In summary, our results support the use of TIL as an intermediate outcome for treatment effect, as done in previous studies.33–35
Due to a strong ceiling effect (Fig. 2A and Fig. 5A), TIL(Basic) should not be used instead of TIL for rating maximum treatment intensity. TIL(Basic)24 and TILmedian covered up to 33% of the information in TIL24 (Fig. 7C), but the TIL(Basic)24 associations with physician concerns of ICP were significantly worse than those of TIL24 (Fig. 3C). TIL should always be preferred to TIL(Basic), but we believe daily or median TIL(Basic) can be a suitable alternative when daily or median TIL assessment is infeasible.
Moreover, we evaluated TIL with both end-hour (ICPEH) and high-resolution (ICPHR) ICP values. ICPHR, if available, should be considered the gold standard in terms of precision and granularity of the information provided, and neuromonitoring-related results from the ICPHR population should generally take precedence.14 However, 67% of expected ICPHR values were missing on day one of ICU stay (Supplementary Fig. S2), likely due to the time required to arrange high-resolution data collection. Consequently, estimates of high- resolution ICPmax were significantly affected by missing value imputation and became imprecise at our sample size (Fig. 3A). In these cases, results from the ICPEH population served as a valuable reference on a substantially larger sample size (Table 2) since ICPEH and CPPEH have been shown to be fair end-hour representations of ICPHR and CPPHR, respectively, in CENTER-TBI.14 The considerable overlap of ICP24 values across TIL24 scores (both at low and high levels of ICP, Fig. 4A) and the insignificant-to-weak, within- individual association between ICP24 and TIL24 (Fig. 3C–D) highlight the need to account for therapeutic intensity when interpreting ICP. Additionally, the higher median ICP24 values for TIL24≥8 (Fig. 4A) may suggest that clinicians accept a slightly higher ICP when balancing the risks of elevating therapeutic intensity against those of intracranial hypertension.
We see three main opportunities to improve TIL. First, the item scores of TIL and its predecessors (i.e., PILOT and TIL(1987)) were not derived empirically. Data-driven techniques, such as confirmatory factor analysis,28 can be used to derive scoring configurations which optimise a defined objective (e.g., maximal separation of patients). However, data-driven scores do not necessarily reflect the intended construct (i.e., treatment risk and complexity),36 and, in general, item scoring does not have an appreciable impact on overall scale performance.28 Second, the items of TIL must evolve as therapeutic approaches to ICP management evolve. TIL discriminated refractory intracranial hypertension status significantly better than TIL(1987) (Fig. 5A–B) because TIL updated TIL(1987) with six additional items (Table 1). We recommend updating and re- evaluating TIL each time ICP-treatment modalities or their perceived risks change. Finally, the development of TIL was largely informed by the perspective of ICU practices in high-income countries.8 Likewise, this assessment was performed in a cohort of patients across Europe and Israel. Especially given the disproportionately higher burden of TBI in low- and middle-income countries,37 it is imperative to test and, if necessary, adapt TIL to a more inclusive, global population of TBI.
By design, TIL does not encompass all facets of modern intensive care for TBI patients. Brain tissue oxygen tension (PbtO2),38 cerebral microdialysis,39 and brain temperature40 have emerged as multimodal, neuromonitoring targets which may affect ICU management in addition to ICP or CPP. Therefore, TIL should be interpreted not as general treatment intensity but rather as the intensity of ICP-directed therapy specifically. We encourage the development and validation of clinical scales assessing the intensity of TBI treatments directed at other physiological targets. Since treatments for other targets often overlap with those for ICP or CPP (e.g., vasopressors target both PbtO2 and CPP),2 we also promote a consolidation of all TBI treatments in an overall therapeutic intensity scale which considers the effect of each treatment on multiple physiological targets.
We recognise several limitations of our analysis. Whilst numerous investigators assessed TIL across the study ICUs, each TIL score was only assessed once. Therefore, we could not evaluate the interrater reliability of TIL. Similarly, data needed to calculate the full TIL score was only recorded once a day, so we could not determine if a daily assessment frequency was sufficient. Since the prior TIL validation study reported a high interrater reliability and recommended a daily assessment frequency,9 we assumed both to be true. The results from the Randomised Evaluation of Surgery with Craniectomy for Uncontrollable Elevation of Intracranial Pressure (RESCUEicp) trial41 – published amidst CENTER-TBI patient recruitment in 2016 – have likely changed the global frequency and perceived intensity of decompressive craniectomy for TBI. Therefore, we recognise the potentially confounding effect of the trial results on treatment decision making for some patients in the CENTER-TBI population and encourage a potential reappraisal of the therapeutic intensity of decompressive craniectomy through expert discussion and statistical validation. The physician impressions (i.e., physician concerns of ICP and CPP and refractory intracranial hypertension status) were subjective, and we did not have enough information to account for interrater variability. Therefore, these scores and labels should be considered unrefined. Finally, because of limited dosage data for numerical treatments (i.e., CSF drainage, ventilation, hyperosmolar therapy, and temperature control), we did not test alternative sub-item categorisations.
Conclusion
TIL is a valid, generalisable measurement of ICP management amongst neuro-monitored TBI patients in the ICU. On all validation metrics, TIL performs at least as well as its alternatives and considers the widest range of modern treatment strategies. TIL’s component scores over increasing TIL reflect a clinically credible order of treatment escalation, from head positioning to ICP-directed surgery. TIL(Basic) is not suitable for evaluating maximum treatment intensity, but daily TIL(Basic) and median TIL(Basic) can cover up to a third of the information in TIL. In the setting of clinical ICP management, TIL is a more sensitive marker of pathophysiological severity than ICP and can be considered an intermediate outcome after TBI.
Data Availability
Individual participant data are available online, conditional to approved online study proposal, with no end date at https://www.center-tbi.eu/data. Signed confirmation of a data access agreement is required, and all access must comply with regulatory restrictions imposed on the original study. All analytic code used to perform the statistical analyses are publicly available online at: https://github.com/sbhattacharyay/CENTER-TBI_TIL.
Transparency, Rigor and Reproducibility Summary
The CENTER-TBI study was pre-registered at clinicaltrials.gov (NCT02210221, https://clinicaltrials.gov/ct2/show/NCT02210221). The analysis plan was registered after beginning data collection but before data analysis at https://www.center-tbi.eu/data/approved-proposals (#491), and the lead author with primary responsibility for the analysis certifies that the analysis plan was pre-specified. A sample size of 903 patients was planned based on availability of critically ill, ICP-monitored, adult TBI patients recruited for CENTER-TBI. Actual sample size was 873, as 18 patients had a documented decision to WLST on the first day of ICU stay and 12 additional patients did not have daily TIL scores assessed. A patient inclusion diagram is provided (Fig. 1). TIL scoring and clinical data entry was performed by investigators who were aware of relevant characteristics of the participants. Participants were recruited between 19 December 2014 and 17 December 2017, and data (including follow-up results) were collected until 31 March 2021. High-resolution waveforms were stored directly from bedside monitoring software, as described in the Methods and Materials. Variability amongst different TIL assessors is not expected to be significant based on the established high interrater reliability of TIL.9 All equipment and software used to perform imaging and preprocessing are widely available from commercial sources or open source repositories. The clinimetric validation procedure and the primary clinical metric (TIL) are established standards in the field, based on previously published results9,28 and this study. The assumption of bootstrapping-derived confidence intervals is that the sample is representative of the population. This study is, itself, an external validation, and internal replication by the study group was performed. Individual participant data are available online, conditional to approved online study proposal, with no end date at https://www.center-tbi.eu/data. Signed confirmation of a data access agreement is required, and all access must comply with regulatory restrictions imposed on the original study. All analytic code used to perform the statistical analyses are publicly available online at: https://github.com/sbhattacharyay/CENTER-TBI_TIL. This paper will be published under a Creative Commons Open Access license, and upon publication, will be freely available at https://www.liebertpub.com/loi/neu.
Author contributions
S.B. co-conceptualised the aims, developed the methodology and design, curated, analysed, and visualised the data, acquired funding, and wrote the manuscript. E.B. curated and analysed data, acquired funding, and reviewed the manuscript. P.Z. and L.W. curated data, aided in the development of methodology, and reviewed the manuscript. EWS and DWN curated data, acquired funding, advised statistical analysis, and reviewed the manuscript. A.I.R.M. and D.K.M. curated data, acquired funding, co-conceptualised the aims, co-developed the methodology, and reviewed the manuscript. A.E. served as principal investigator, curated data, conceptualised the aims, co-developed the methodology, and reviewed the manuscript. All authors read and approved the final manuscript.
Conflicts of interest
All authors declare no financial or non-financial competing interests.
Funding statement
This research was supported by the National Institute for Health Research (NIHR) Brain Injury MedTech Co-operative. CENTER-TBI was supported by the European Union 7th Framework programme (EC grant 602150). Additional funding was obtained from the Hannelore Kohl Stiftung (Germany), from OneMind (USA), from Integra LifeSciences Corporation (USA), and from NeuroTrauma Sciences (USA). CENTER-TBI also acknowledges interactions and support from the International Initiative for TBI Research (InTBIR) investigators. S.B. is funded by a Gates Cambridge Scholarship. E.B. is funded by the Medical Research Council (MR N013433-1) and by a Gates Cambridge Scholarship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
The CENTER-TBI investigators and participants
The co-lead investigators of CENTER-TBI are designated with an asterisk (*), and their contact email addresses are listed below.
Cecilia Åkerlund1, Krisztina Amrein2, Nada Andelic3, Lasse Andreassen4, Audny Anke5, Anna Antoni6, Gérard Audibert7, Philippe Azouvi8, Maria Luisa Azzolini9, Ronald Bartels10, Pál Barzó11, Romuald Beauvais12, Ronny Beer13, Bo-Michael Bellander14, Antonio Belli15, Habib Benali16, Maurizio Berardino17, Luigi Beretta9, Morten Blaabjerg18, Peter Bragge19, Alexandra Brazinova20, Vibeke Brinck21, Joanne Brooker22, Camilla Brorsson23, Andras Buki24, Monika Bullinger25, Manuel Cabeleira26, Alessio Caccioppola27, Emiliana Calappi27, Maria Rosa Calvi9, Peter Cameron28, Guillermo Carbayo Lozano29, Marco Carbonara27, Simona Cavallo17, Giorgio Chevallard30, Arturo Chieregato30, Giuseppe Citerio31,32, Hans Clusmann33, Mark Coburn34, Jonathan Coles35, Jamie D. Cooper36, Marta Correia37, Amra Čović38, Nicola Curry39, Endre Czeiter24, Marek Czosnyka26, Claire Dahyot-Fizelier40, Paul Dark41, Helen Dawes42, Véronique De Keyser43, Vincent Degos16, Francesco Della Corte44, Hugo den Boogert10, Bart Depreitere45, Đula Đilvesi46, Abhishek Dixit47, Emma Donoghue22, Jens Dreier48, Guy-Loup Dulière49, Ari Ercole47, Patrick Esser42, Erzsébet Ezer50, Martin Fabricius51, Valery L. Feigin52, Kelly Foks53, Shirin Frisvold54, Alex Furmanov55, Pablo Gagliardo56, Damien Galanaud16, Dashiell Gantner28, Guoyi Gao57, Pradeep George58, Alexandre Ghuysen59, Lelde Giga60, Ben Glocker61, Jagoš Golubovic46, Pedro A. Gomez62, Johannes Gratz63, Benjamin Gravesteijn64, Francesca Grossi44, Russell L. Gruen65, Deepak Gupta66, Juanita A. Haagsma64, Iain Haitsma67, Raimund Helbok13, Eirik Helseth68, Lindsay Horton69, Jilske Huijben64, Peter J. Hutchinson70, Bram Jacobs71, Stefan Jankowski72, Mike Jarrett21, Ji-yao Jiang58, Faye Johnson73, Kelly Jones52, Mladen Karan46, Angelos G. Kolias70, Erwin Kompanje74, Daniel Kondziella51, Evgenios Kornaropoulos47, Lars-Owe Koskinen75, Noémi Kovács76, Ana Kowark77, Alfonso Lagares62, Linda Lanyon58, Steven Laureys78, Fiona Lecky79,80, Didier Ledoux78, Rolf Lefering81, Valerie Legrand82, Aurelie Lejeune83, Leon Levi84, Roger Lightfoot85, Hester Lingsma64, Andrew I.R. Maas43,86,*, Ana M. Castaño-León62, Marc Maegele87, Marek Majdan20, Alex Manara88, Geoffrey Manley89, Costanza Martino90, Hugues Maréchal49, Julia Mattern91, Catherine McMahon92, Béla Melegh93, David Menon47,*, Tomas Menovsky43,86, Ana Mikolic64, Benoit Misset78, Visakh Muraleedharan58, Lynnette Murray28, Ancuta Negru94, David Nelson1, Virginia Newcombe47, Daan Nieboer64, József Nyirádi2, Otesile Olubukola79, Matej Oresic95, Fabrizio Ortolano27, Aarno Palotie96,97,98, Paul M. Parizel99, Jean-François Payen100, Natascha Perera12, Vincent Perlbarg16, Paolo Persona101, Wilco Peul102, Anna Piippo- Karjalainen103, Matti Pirinen96, Dana Pisica64, Horia Ples94, Suzanne Polinder64, Inigo Pomposo29, Jussi P. Posti104, Louis Puybasset105, Andreea Radoi106, Arminas Ragauskas107, Rahul Raj103, Malinka Rambadagalla108, Isabel Retel Helmrich64, Jonathan Rhodes109, Sylvia Richardson110, Sophie Richter47, Samuli Ripatti96, Saulius Rocka107, Cecilie Roe111, Olav Roise112,113, Jonathan Rosand114, Jeffrey V. Rosenfeld115, Christina Rosenlund116, Guy Rosenthal55, Rolf Rossaint77, Sandra Rossi101, Daniel Rueckert61 Martin Rusnák117, Juan Sahuquillo106, Oliver Sakowitz91,118, Renan Sanchez-Porras118, Janos Sandor119, Nadine Schäfer81, Silke Schmidt120, Herbert Schoechl121, Guus Schoonman122, Rico Frederik Schou123, Elisabeth Schwendenwein6, Charlie Sewalt64, Ranjit D. Singh102, Toril Skandsen124,125, Peter Smielewski26, Abayomi Sorinola126, Emmanuel Stamatakis47, Simon Stanworth39, Robert Stevens127, William Stewart128, Ewout W. Steyerberg64,129, Nino Stocchetti130, Nina Sundström131, Riikka Takala132, Viktória Tamás126, Tomas Tamosuitis133, Mark Steven Taylor20, Aurore Thibaut78, Braden Te Ao52, Olli Tenovuo104, Alice Theadom52, Matt Thomas88, Dick Tibboel134, Marjolein Timmers74, Christos Tolias135, Tony Trapani28, Cristina Maria Tudora94, Andreas Unterberg91, Peter Vajkoczy136, Shirley Vallance28, Egils Valeinis60, Zoltán Vámos50, Mathieu van der Jagt137, Gregory Van der Steen43, Joukje van der Naalt71, Jeroen T.J.M. van Dijck102, Inge A. M. van Erp102, Thomas A. van Essen102, Wim Van Hecke138, Caroline van Heugten139, Ernest van Veen64, Thijs Vande Vyvere140, Roel P. J. van Wijk102, Alessia Vargiolu32, Emmanuel Vega83, Kimberley Velt64, Jan Verheyden138, Paul M. Vespa141, Anne Vik124,142, Rimantas Vilcinis133, Victor Volovici67, Nicole von Steinbüchel38, Daphne Voormolen64, Petar Vulekovic46, Kevin K.W. Wang143, Daniel Whitehouse47, Eveline Wiegers64, Guy Williams47, Lindsay Wilson69, Stefan Winzeck47, Stefan Wolf144, Zhihui Yang114, Peter Ylén145, Alexander Younsi91, Frederick A. Zeiler47,146, Veronika Zelinkova20, Agate Ziverte60, Tommaso Zoerle27
1Department of Physiology and Pharmacology, Section of Perioperative Medicine and Intensive Care, Karolinska Institutet, Stockholm, Sweden
2János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
3Division of Clinical Neuroscience, Department of Physical Medicine and Rehabilitation, Oslo University Hospital and University of Oslo, Oslo, Norway
4Department of Neurosurgery, University Hospital Northern Norway, Tromso, Norway
5Department of Physical Medicine and Rehabilitation, University Hospital Northern Norway, Tromso, Norway
6Trauma Surgery, Medical University Vienna, Vienna, Austria
7Department of Anesthesiology & Intensive Care, University Hospital Nancy, Nancy, France
8Raymond Poincare hospital, Assistance Publique – Hopitaux de Paris, Paris, France
9Department of Anesthesiology & Intensive Care, S Raffaele University Hospital, Milan, Italy
10Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
11Department of Neurosurgery, University of Szeged, Szeged, Hungary
12International Projects Management, ARTTIC, Munchen, Germany
13Department of Neurology, Neurological Intensive Care Unit, Medical University of Innsbruck, Innsbruck, Austria
14Department of Neurosurgery & Anesthesia & intensive care medicine, Karolinska University Hospital, Stockholm, Sweden
15NIHR Surgical Reconstruction and Microbiology Research Centre, Birmingham, UK
16Anesthesie-Réanimation, Assistance Publique – Hopitaux de Paris, Paris, France
17Department of Anesthesia & ICU, AOU Città della Salute e della Scienza di Torino - Orthopedic and Trauma Center, Torino, Italy
18Department of Neurology, Odense University Hospital, Odense, Denmark
19BehaviourWorks Australia, Monash Sustainability Institute, Monash University, Victoria, Australia
20Department of Public Health, Faculty of Health Sciences and Social Work, Trnava University, Trnava, Slovakia
21Quesgen Systems Inc., Burlingame, California, USA
22Australian & New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
23Department of Surgery and Perioperative Science, Umeå University, Umeå, Sweden
24Department of Neurosurgery, Medical School, University of Pécs, Hungary and Neurotrauma Research Group, János Szentágothai Research Centre, University of Pécs, Hungary
25Department of Medical Psychology, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
26Brain Physics Lab, Division of Neurosurgery, Dept of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
27Neuro ICU, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
28ANZIC Research Centre, Monash University, Department of Epidemiology and Preventive Medicine, Melbourne, Victoria, Australia
29Department of Neurosurgery, Hospital of Cruces, Bilbao, Spain
30NeuroIntensive Care, Niguarda Hospital, Milan, Italy
31School of Medicine and Surgery, Università Milano Bicocca, Milano, Italy
32NeuroIntensive Care Unit, Department Neuroscience, IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy
33Department of Neurosurgery, Medical Faculty RWTH Aachen University, Aachen, Germany
34Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
35Department of Anesthesia & Neurointensive Care, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
36School of Public Health & PM, Monash University and The Alfred Hospital, Melbourne, Victoria, Australia
37Radiology/MRI department, MRC Cognition and Brain Sciences Unit, Cambridge, UK
38Institute of Medical Psychology and Medical Sociology, Universitätsmedizin Göttingen, Göttingen, Germany
39Oxford University Hospitals NHS Trust, Oxford, UK
40Intensive Care Unit, CHU Poitiers, Potiers, France
41University of Manchester NIHR Biomedical Research Centre, Critical Care Directorate, Salford Royal Hospital NHS Foundation Trust, Salford, UK
42Movement Science Group, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
43Department of Neurosurgery, Antwerp University Hospital, Edegem, Belgium
44Department of Anesthesia & Intensive Care, Maggiore Della Carità Hospital, Novara, Italy
45Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
46Department of Neurosurgery, Clinical centre of Vojvodina, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
47Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
48Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
49Intensive Care Unit, CHR Citadelle, Liège, Belgium
50Department of Anaesthesiology and Intensive Therapy, University of Pécs, Pécs, Hungary
51Departments of Neurology, Clinical Neurophysiology and Neuroanesthesiology, Region Hovedstaden Rigshospitalet, Copenhagen, Denmark
52National Institute for Stroke and Applied Neurosciences, Faculty of Health and Environmental Studies, Auckland University of Technology, Auckland, New Zealand
53Department of Neurology, Erasmus MC, Rotterdam, the Netherlands
54Department of Anesthesiology and Intensive care, University Hospital Northern Norway, Tromso, Norway
55Department of Neurosurgery, Hadassah-hebrew University Medical center, Jerusalem, Israel
56Fundación Instituto Valenciano de Neurorrehabilitación (FIVAN), Valencia, Spain
57Department of Neurosurgery, Shanghai Renji hospital, Shanghai Jiaotong University/school of medicine, Shanghai, China
58Karolinska Institutet, INCF International Neuroinformatics Coordinating Facility, Stockholm, Sweden
59Emergency Department, CHU, Liège, Belgium
60Neurosurgery clinic, Pauls Stradins Clinical University Hospital, Riga, Latvia
61Department of Computing, Imperial College London, London, UK
62Department of Neurosurgery, Hospital Universitario 12 de Octubre, Madrid, Spain
63Department of Anesthesia, Critical Care and Pain Medicine, Medical University of Vienna, Austria
64Department of Public Health, Erasmus Medical Center-University Medical Center, Rotterdam, The Netherlands
65College of Health and Medicine, Australian National University, Canberra, Australia
66Department of Neurosurgery, Neurosciences Centre & JPN Apex trauma centre, All India Institute of Medical Sciences, New Delhi-110029, India
67Department of Neurosurgery, Erasmus MC, Rotterdam, the Netherlands
68Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
69Division of Psychology, University of Stirling, Stirling, UK
70Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke’s Hospital & University of Cambridge, Cambridge, UK
71Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
72Neurointensive Care, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
73Salford Royal Hospital NHS Foundation Trust Acute Research Delivery Team, Salford, UK
74Department of Intensive Care and Department of Ethics and Philosophy of Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
75Department of Clinical Neuroscience, Neurosurgery, Umeå University, Umeå, Sweden
76Hungarian Brain Research Program - Grant No. KTIA_13_NAP-A-II/8, University of Pécs, Pécs, Hungary
77Department of Anaesthesiology, University Hospital of Aachen, Aachen, Germany
78Cyclotron Research Center, University of Liège, Liège, Belgium
79Centre for Urgent and Emergency Care Research (CURE), Health Services Research Section, School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
80Emergency Department, Salford Royal Hospital, Salford UK
81Institute of Research in Operative Medicine (IFOM), Witten/Herdecke University, Cologne, Germany
82VP Global Project Management CNS, ICON, Paris, France
83Department of Anesthesiology-Intensive Care, Lille University Hospital, Lille, France
84Department of Neurosurgery, Rambam Medical Center, Haifa, Israel
85Department of Anesthesiology & Intensive Care, University Hospitals Southhampton NHS Trust, Southhampton, UK
86Department of Translational Neuroscience, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
87Cologne-Merheim Medical Center (CMMC), Department of Traumatology, Orthopedic Surgery and Sportmedicine, Witten/Herdecke University, Cologne, Germany
88Intensive Care Unit, Southmead Hospital, Bristol, Bristol, UK
89Department of Neurological Surgery, University of California, San Francisco, California, USA
90Department of Anesthesia & Intensive Care,M. Bufalini Hospital, Cesena, Italy
91Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
92Department of Neurosurgery, The Walton centre NHS Foundation Trust, Liverpool, UK
93Department of Medical Genetics, University of Pécs, Pécs, Hungary
94Department of Neurosurgery, Emergency County Hospital Timisoara, Timisoara, Romania
95School of Medical Sciences, Örebro University, Örebro, Sweden
96Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
97Analytic and Translational Genetics Unit, Department of Medicine; Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
98Program in Medical and Population Genetics; The Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
99Department of Radiology, University of Antwerp, Edegem, Belgium
100Department of Anesthesiology & Intensive Care, University Hospital of Grenoble, Grenoble, France
101Department of Anesthesia & Intensive Care, Azienda Ospedaliera Università di Padova, Padova, Italy
102Dept. of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands and Dept. of Neurosurgery, Medical Center Haaglanden, The Hague, The Netherlands
103Department of Neurosurgery, Helsinki University Central Hospital
104Division of Clinical Neurosciences, Department of Neurosurgery and Turku Brain Injury Centre, Turku University Hospital and University of Turku, Turku, Finland
105Department of Anesthesiology and Critical Care, Pitié -Salpêtrière Teaching Hospital, Assistance Publique, Hôpitaux de Paris and University Pierre et Marie Curie, Paris, France
106Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d’Hebron Research Institute, Barcelona, Spain
107Department of Neurosurgery, Kaunas University of technology and Vilnius University, Vilnius, Lithuania
108Department of Neurosurgery, Rezekne Hospital, Latvia
109Department of Anaesthesia, Critical Care & Pain Medicine NHS Lothian & University of Edinburg, Edinburgh, UK
110Director, MRC Biostatistics Unit, Cambridge Institute of Public Health, Cambridge, UK
111Department of Physical Medicine and Rehabilitation, Oslo University Hospital/University of Oslo, Oslo, Norway
112Division of Orthopedics, Oslo University Hospital, Oslo, Norway
113Institue of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
114Broad Institute, Cambridge MA Harvard Medical School, Boston MA, Massachusetts General Hospital, Boston MA, USA
115National Trauma Research Institute, The Alfred Hospital, Monash University, Melbourne, Victoria, Australia
116Department of Neurosurgery, Odense University Hospital, Odense, Denmark
117International Neurotrauma Research Organisation, Vienna, Austria
118Klinik für Neurochirurgie, Klinikum Ludwigsburg, Ludwigsburg, Germany
119Division of Biostatistics and Epidemiology, Department of Preventive Medicine, University of Debrecen, Debrecen, Hungary
120Department Health and Prevention, University Greifswald, Greifswald, Germany
121Department of Anaesthesiology and Intensive Care, AUVA Trauma Hospital, Salzburg, Austria
122Department of Neurology, Elisabeth-TweeSteden Ziekenhuis, Tilburg, the Netherlands
123Department of Neuroanesthesia and Neurointensive Care, Odense University Hospital, Odense, Denmark
124Department of Neuromedicine and Movement Science, Norwegian University of
Science and Technology, NTNU, Trondheim, Norway
125Department of Physical Medicine and Rehabilitation, St.Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
126Department of Neurosurgery, University of Pécs, Pécs, Hungary
127Division of Neuroscience Critical Care, John Hopkins University School of Medicine, Baltimore, USA
128Department of Neuropathology, Queen Elizabeth University Hospital and University of Glasgow, Glasgow, UK
129Dept. of Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
130Department of Pathophysiology and Transplantation, Milan University, and Neuroscience ICU, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Italy
131Department of Radiation Sciences, Biomedical Engineering, Umeå University, Umeå, Sweden
132Perioperative Services, Intensive Care Medicine and Pain Management, Turku
University Hospital and University of Turku, Turku, Finland
133Department of Neurosurgery, Kaunas University of Health Sciences, Kaunas, Lithuania
134Intensive Care and Department of Pediatric Surgery, Erasmus Medical Center, Sophia Children’s Hospital, Rotterdam, The Netherlands
135Department of Neurosurgery, Kings college London, London, UK
136Neurologie, Neurochirurgie und Psychiatrie, Charité – Universitätsmedizin Berlin, Berlin, Germany
137Department of Intensive Care Adults, Erasmus MC– University Medical Center Rotterdam, Rotterdam, the Netherlands
138icoMetrix NV, Leuven, Belgium
139Movement Science Group, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
140Radiology Department, Antwerp University Hospital, Edegem, Belgium
141Director of Neurocritical Care, University of California, Los Angeles, USA
142Department of Neurosurgery, St.Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
143Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA
144Department of Neurosurgery, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
145VTT Technical Research Centre, Tampere, Finland
146Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
*Co-lead investigators: andrew.maas{at}uza.be (AIRM) and dkm13{at}cam.ac.uk (DM)
Acknowledgments
We are grateful to the patients and families of our study for making our efforts to improve TBI care possible. S.B. would like to thank Kathleen Mitchell-Fox (Princeton University) for offering comments on the manuscript.
Footnotes
↵† A full list of the CENTER-TBI investigators and participants are listed after the acknowledgements.
Shubhayu Bhattacharyay, sb2406{at}cam.ac.uk, +44 (0)1223 217889, Division of Anaesthesia, University of Cambridge, Box 93, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, United Kingdom; Erta Beqiri, vb391{at}cam.ac.uk, +44 (0)7912 138171, Brain Physics Lab, Division of Neurosurgery, University of Cambridge, Box 167, Level A4, A Block, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, United Kingdom; Patrick Zuercher, patrick.zuercher{at}insel.ch, +41 31 664 15 77, Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, CH-3010 Bern, Switzerland; Lindsay Wilson, l.wilson{at}stir.ac.uk, +44 (0)1786 473171, Division of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom; Ewout W Steyerberg, e.w.steyerberg{at}lumc.nl, +31 (0)71 5269700, Dept of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands; David W Nelson david.nelson{at}regionstockholm.se, +46 812379168, Function Perioperative medicine and Intensive Care (PMI), Karolinska University Hospital, Solna, 17176 Stockholm, Sweden; Andrew I R Maasandrew.maas{at}uza.be, +32 38214632, Department of Neurosurgery, Antwerp University Hospital, Drie Eikenstraat 655, 2650 Edegem, Belgium; David K Menon dkm13{at}cam.ac.uk, +44 (0)1223 217889, Division of Anaesthesia, University of Cambridge, Box 93, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, United Kingdom; Ari Ercoleae105{at}cam.ac.uk, +44 (0)1223 217889, Division of Anaesthesia, University of Cambridge, Box 93, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, United Kingdom
(1) The abstract has been significantly revised to provide better context for this work and focus on the main points for a wider neurotrauma audience. (2) We have added discussion pertaining to centre-specific differences and non-ICP physiological targets of TBI care in the ICU. (3) Since TIL(Basic) has five categories if zero is included (i.e., 0≤TIL(Basic)≤4), we have revised each previous mention of TIL(Basic) as a "four-point" scale to now read as a "five-category" scale. This also distinguishes TIL(Basic), which is a strictly categorical scale, from the other TIL scales, which are point-total scales.