ABSTRACT
Objectives Our primary objective was to develop a natural language processing approach that accurately predicts outpatient Evaluation and Management (E/M) level of service (LoS) codes using clinicians’ notes from a health system electronic health record. A secondary objective was to investigate the impact of clinic note de-identification on document classification performance.
Methods We used retrospective outpatient office clinic notes from four medical and surgical specialties. Classification models were fine-tuned on the clinic notes datasets and stratified by subspecialty. The success criteria for the classification tasks were the classification accuracy and F1-scores on internal test data. For the secondary objective, the dataset was de-identified using Named Entity Recognition (NER) to remove protected health information (PHI), and models were retrained.
Results The models demonstrated similar predictive performance across different specialties, except for internal medicine, which had the lowest classification accuracy across all model architectures. The models trained on the entire note corpus achieved an E/M LoS CPT code classification accuracy of 74.8% (CI 95: 74.1-75.6). However, the de-identified note corpus showed a markedly lower classification accuracy of 48.2% (CI 95: 47.7-48.6) compared to the model trained on the identified notes.
Conclusion The study demonstrates the potential of NLP-based document classifiers to accurately predict E/M LoS CPT codes using clinical notes from various medical and procedural specialties. The models’ performance suggests that the classification task’s complexity merits further investigation. The de-identification experiment demonstrated that de-identification may negatively impact classifier performance. Further research is needed to validate the performance of our NLP classifiers in different healthcare settings and patient populations and to investigate the potential implications of de-identification on model performance.
Competing Interest Statement
Dr. Bates reports grants and personal fees from EarlySense, personal fees from CDI Negev, equity from ValeraHealth, equity from Clew, equity from MDClone, personal fees and equity from AESOP, personal fees and equity from Feelbetter, equity from Guided Clinical Solutions, and grants from IBM Watson Health, outside the submitted work. Dr. Bates has a patent pending (PHC-028564 US PCT), on intraoperative clinical decision support. Dr. Crowson holds a position with Deloitte Consulting in addition to his academic affiliation.
Funding Statement
This work was funded in part by the NLM Biomedical Informatics and Data Science Research Training Program; T15LM007092-30
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This study protocol was reviewed by the MassGeneral Brigham institutional review board and deemed exempt from formal review (Protocol #2021P002787).
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
As the raw data used in the present study contains PII/PHI, it is not available for public dissemination.