Abstract
E-cigarette use among adolescents is a national health epidemic spreading faster than researchers can amass evidence for risk and protective factors and long-term consequences associated with use. New technologies, such as machine learning, may assist prevention programs in identifying at-risk youth and potential targets for intervention before adolescents enter developmental periods where e-cigarette use escalates. The current study utilized machine learning algorithms to explore a wide array of individual and socioecological variables in relation to patterns of lifetime e-cigarette use during early adolescence (i.e., exclusive, or with tobacco). Extant data was used from 14,346 students middle school students (Mage = 12.5, SD = 1.1; 6th and 8th grades) who participated in the Utah Prevention Needs Assessment survey. Students self-reported their substance use behaviors and related risk and protective factors. Machine learning algorithms examined 112 individual and socioecological factors as potential classifiers of lifetime e-cigarette use outcomes. The elastic net algorithm achieved outstanding classification for lifetime exclusive (AUC = .926) and dual use (AUC = .944) on a validation test set. Six high value classifiers were identified that varied in importance by outcome: Lifetime alcohol or marijuana use, perception of e-cigarette availability and risk, school suspension(s), and perceived risk of smoking marijuana regularly. Specific classifiers were important for lifetime exclusive (parent attitudes regarding student vaping, best friend[s] tried alcohol or marijuana) and dual use (best friend[s] smoked cigarettes, lifetime inhalant use). Our findings provide specific targets for the adaptation of existing substance use prevention programs to address early adolescent e-cigarette use.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This research was funded by a collaboration between multiple state agencies in Utah (i.e., Department of Health, Department of Human Services, and the State Board of Education).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The Utah State University Institutional Review Board approved secondary analyses of the 2017 Utah PNA survey data as non-human subjects research as participants could not be re-identified (protocol #10108).
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
Minor corrections to typographical errors.
Data Availability
We are not authorized to share the Utah Prevention Needs Assessment data used in the current study as it is owed and managed by the Utah Department of Human and Health Services. Data used in the current study can be requested from the Utah Department of Human and Health Services.