Abstract
Carpal tunnel syndrome (CTS) is a pathology affecting hand function caused by median nerve overload. Numbness in the fingers, a loss of sensory and motor function in the hand, and pain are all symptoms of carpal tunnel syndrome. The lack of numerical data about the median nerve mechanical strain inside the carpal tunnel is the main disadvantage of current clinical approaches employed in carpal syndrome diagnostics. Moreover, application of each diagnostic method alone often leads to misdiagnosis. We proposed a combined approach including hand motion capture, finite element modelling (FEM), and electromechanical simulations to evaluate median nerve compression and find a correlation with hand mobility. The hand motion capture provided the boundary conditions for FEM. After that, FEM simulations of finger flexion and hand flexion / extension were performed. Further, FEM results were put in the electrical model of nerve conduction based on the Hodgkin-Huxley model and extended cable equation. It was exhibited median nerve conduction reduced significantly throughout the flexion and extension of the hand that compared to finger flexion. During finger flexion and hand flexion and extension, the load distribution over each of nine finger flexor tendons was evaluated. The tendons of the index finger were found to have the highest Mises stress values. It was found how tendon and connective tissue contact types affected carpal tunnel pressure. The difference between the contact types was 31.7% for hand extension and 59.9% for hand flexion. The developed approach has the potential to become an alternative diagnostic method for CTS at early stages. Additionally, it can be employed as non-invasive procedure for evaluation of carpal nerve stress.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
NO - The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The research protocol used in this study was approved by the Ethical Committee Board of Perm State Medical University (Protocol No. 17 on 25 November 2022).
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
-