Abstract
In clinical studies, multi-state model (MSM) analysis is often used to describe the sequence of events that patients experience, enabling better understanding of disease progression. A complicating factor in many MSM studies is that the exact event times may not be known. Motivated by a real dataset of patients who received stem cell transplants, we considered the setting in which some event times were exactly observed and some were missing. In our setting, there was little information about the time intervals in which the missing event times occurred and missingness depended on the event type, given the analysis model covariates. These additional challenges limited the usefulness of some missing data methods (maximum likelihood, complete case analysis, and inverse probability weighting). We show, for the first time in the MSM context, that multiple imputation (MI) of event times can perform well in this setting. MI is a flexible method that can be used with any complete data analysis model. Through an extensive simulation study, we show that MI by predictive mean matching (PMM), in which sampling is from a set of observed times without reliance on a specific parametric distribution, has little bias when event times are missing at random, conditional on the observed data. Applying PMM separately for each sub-group of patients with a different pathway through the MSM tends to further reduce bias and improve precision. We recommend MI using PMM methods when performing MSM analysis with Markov models and partially observed event times.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors. Elinor Curnow is supported by funding from NHS Blood and Transplant. Elinor Curnow, Kate Tilling, and Kate Birnie work in the Medical Research Council Integrative Epidemiology Unit at the University of Bristol which is supported by the Medical Research Council and the University of Bristol MC_UU_00011/3. Rachael Hughes is supported by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (Grant Number 215408/Z/19/Z).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Ethics committee of NHS Blood and Transplant, UK gave ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
R code to perform the simulation study is provided in Supplementary Material Section S5. The real data that support the findings of this study are not publicly available due to privacy restrictions.