Abstract
Background: Long-term noise exposure is associated with cardiovascular disease (CVD), including acute cardiovascular events such as myocardial infarction and stroke. However, longitudinal cohort studies of long-term noise and CVD are almost exclusively from Europe, and few modelled nighttime and daytime noise separately. We aimed to examine the prospective association of outdoor long-term nighttime and daytime noise from anthropogenic sources with incident CVD using a US-based, nationwide cohort of women.
Methods: We linked L50 (median) nighttime and L50 daytime modelled anthropogenic noise estimates from a US National Park Service model to geocoded residential addresses of 114,116 participants in the Nurses’ Health Study. We used time-varying Cox proportional hazards models to estimate risk of incident CVD, coronary heart disease (CHD), and stroke associated with long-term average noise exposure, adjusted for potential individual- and area-level confounders and CVD risk factors (1988-2018). We assessed effect modification by population density, region, air pollution, vegetation cover, and neighborhood socioeconomic status, and explored mediation by self-reported average nightly sleep duration.
Results: Over 2,544,035 person-years, there were 10,331 incident CVD events. In fully-adjusted models, the hazard ratios for each interquartile range increase in L50 nighttime noise (3.67 dBA) and L50 daytime noise (4.35 dBA), respectively, were 1.04 (95% CI 1.02, 1.06) and 1.04 (95% CI 1.02, 1.07). Similar associations were observed for CHD and stroke. Stratified analyses suggested that associations of nighttime and daytime noise with CVD did not differ by prespecified effect modifiers. We found no evidence that inadequate sleep (< 5 hours per night) mediated associations of noise and CVD.
Discussion: Outdoor median nighttime and daytime noise at the residential address was associated with a small increase in CVD risk in a cohort of adult female nurses.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported by NIH grants UM1 CA186107, U01 HL145386, R01 HL034594, R01 HL088521, R01 ES028033, R01 ES026246, R01 HL150119, P30 ES000002, and W81XWH2210030.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This study was approved by the Institutional Review Board of Brigham and Womens Hospital, Boston, MA.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, The University of Edinburgh, University of Washington, and Vrije Universiteit Amsterdam.