Abstract
Objective The molecular heterogeneity of colon cancer makes the prediction of disease prognosis challenging. In order to resolve this heterogeneity, molecular tumor subtyping present solutions. These approaches are expected to contribute to clinical decision-making. In this study, we aimed to identify Consensus Molecular Subtype (CMS) specific prognostic genes of colon cancer, focusing on anti-tumor immune-response associated CMS1, through a fuzzy-based machine learning approach.
Materials and Methods We applied Fuzzy C-Means (FCM) clustering to stratify patients into two groups and identified genes that predict significant disease-specific survival difference between groups. We then performed Cox regression analyses to identify the most significant genes associated with disease-specific survival. A subtype-specific risk score and a final risk score formulae were constructed and used to calculate risk scores to stratify patients into low and high-risk groups within each CMS (1 to 4) or independent of CMS respectively.
Results We identified CMS-specific genes and an overall 11-gene signature for prognostic risk prediction based on the disease-specific survival of colon cancer patients. The patients in both discovery and test cohorts were stratified into high and low-risk groups using subtype risk scores. The disease-specific survival of these risk groups within each CMS, except CMS3, was significantly different for both discovery and test cohorts.
Discussion and Conclusions We have identified novel prognostic genes with potential immune regulatory roles within the immune-response associated CMS1. The low number of patients in the CMS3 cohort prevented subtype-specific prognostic gene validation. Tumor stage grouping of the validation cohort suggested the best prediction of prognosis in tumor stage III patients. In conclusion, newly identified eleven genes can efficiently predict the prognostic risk of colon cancer patients and classify patients into corresponding risk groups.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study did not receive any funding
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The datasets supporting the conclusions of this article are publicly available and can be downloaded from TCGA data portal (https://portal.gdc.cancer.gov) and NCBI data portal (https://www.ncbi.nlm.nih.gov/geo/) or by using TCGAbiolinks R package
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
All data produced in the present study are available upon reasonable request to the authors