Abstract
Multiple sclerosis (MS) is a heterogeneous disorder with regards to clinical presentation and pathophysiology. Stratification into biologically distinct subgroups could enhance prognostication and efficacious allocation to disease-modifying therapies. In this study, we identified MS subgroups by performing a clustering analysis on neuropathology data collected for MS donors in the Netherlands Brain Bank (NBB) autopsy cohort. The input dataset contained detailed information on white matter lesion load, the proportion of active, mixed active/inactive, inactive and remyelinating lesions, microglia morphology in these lesions, and the presence of microglial nodules, perivascular cuffs and cortical lesions for 228 donors. A factor analysis was performed to reduce noise and redundancy prior to hierarchical clustering with K-means consolidation. Four subgroups with distinct patterns of white matter lesions were identified. These were subsequently validated with additional clinical, neuropathological and genetic data. The subgroups differed with regards to disease progression and duration, the timing of motor, sensory and other relevant signs and symptoms, patterns of cortical lesions and the presence of B cells. Age at MS onset and sex, previously associated with milder forms of MS, did not differ between the subgroups; the subgroups could also not be distinguished based on the manifestation of clinical signs and symptoms. The available genetic data was used to calculate MS polygenic risk scores (PRSs) for donors included in the NBB cohort. The MS PRS did not differ between the subgroups, but was significantly correlated with the first and second dimension of the factor analysis, the latter lending genetic support to our subdivision. Taken together, these findings suggest a complex relationship between neuropathological subgroups and clinical characteristics, indicating that post-mortem cohort studies are critical to better stratify patients and understand underlying neuropathophysiological mechanisms, in order to ultimately achieve personalised medicine in MS.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
We would like to acknowledge Stichting Vrienden van het Herseninstituut for their financial support to make this work possible.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The forms and procedures of the Netherlands Brain Bank were approved by the Free University Medical Center - Medical Ethics Committee (VUmc METC, Amsterdam, the Netherlands) See also: https://www.brainbank.nl/media/uploads/file/Ethical%20declaration%202019.pdf
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
All data produced in the present study are available upon reasonable request to the authors.