Abstract
Background Early in the COVID-19 pandemic, peak viral loads coincided with symptom onset. We hypothesized that in a highly immune population, symptom onset might occur earlier in infection, coinciding with lower viral loads.
Methods We assessed SARS-CoV-2 and influenza A viral loads relative to symptom duration in recently-tested adults. Symptomatic participants ≥16y presenting to testing sites in Georgia (4/2022-4/2023; Omicron variant predominant) provided symptom duration. Nasal swab samples were tested by the Xpert Xpress SARS-CoV-2/Flu/RSV assay and Ct values recorded. Nucleoprotein concentrations in SARS-CoV-2 PCR-positive samples were measured by Single Molecule Array. To estimate hypothetical antigen rapid diagnostic test (Ag RDT) sensitivity on each day after symptom onset, percentages of individuals with Ct value ≤30 or ≤25 were calculated.
Results Of 621 SARS-CoV-2 PCR-positive individuals (64.1% women, median 40.9y), 556/621 (89.5%) had a history of vaccination, natural infection, or both. By both Ct value and antigen concentration measurements, median viral loads rose from the day of symptom onset and peaked on the fourth day. Ag RDT sensitivity estimates were 35.7-71.4% on the first day, 63.9-78.7% on the third day, and 78.6-90.6% on the fourth day of symptoms.
In 74 influenza A PCR-positive individuals (55.4% women; median 35.0y), median influenza viral loads peaked on the second day of symptoms.
Conclusions In a highly immune adult population, median SARS-CoV-2 viral loads peaked on the fourth day of symptoms. Influenza A viral loads peaked soon after symptom onset. These findings have implications for ongoing use of Ag RDTs for COVID-19 and influenza.
Key Points In a highly immune adult population, median SARS-CoV-2 viral loads by cycle threshold and antigen measurements peaked on the fourth day of symptoms, with implications for testing practice. In contrast, viral loads for influenza A peaked soon after symptom onset.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
There was no dedicated funding for this analysis. Patient enrollment and testing under the RADx study was funded by NIH Grants U54 EB027690 02S1, U54 EB027690 03S1, U54EB027690 03S2, and UL1TR002378.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
IRB of Emory University gave ethical approval for this work IRB of Children's Healthcare of Atlanta gave ethical approval for this work IRB of Grady Hospital gave ethical approval for this work
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
All data produced in the present work are contained in the manuscript