Abstract
Background Body composition assessment using abdominal computed tomography (CT) images is increasingly applied in clinical and translational research. Manual segmentation of body compartments on L3 CT images is time-consuming and requires significant expertise. Robust high-throughput automated segmentation is key to assess large patient cohorts and ultimately, to support implementation into routine clinical practice. By training a deep learning neural network (DLNN) with several large trial cohorts and performing external validation on a large independent cohort, we aim to demonstrate the robust performance of our automatic body composition segmentation tool for future use in patients.
Methods L3 CT images and expert-drawn segmentations of skeletal muscle, visceral adipose tissue, and subcutaneous adipose tissue of patients undergoing abdominal surgery were pooled (n = 3,187) to train a DLNN. The trained DLNN was then externally validated in a cohort with L3 CT images of patients with abdominal cancer (n = 2,535). Geometric agreement between automatic and manual segmentations was evaluated by computing two-dimensional Dice Similarity (DS). Agreement between manual and automatic annotations were quantitatively evaluated in the test set using Lin’s Concordance Correlation Coefficient (CCC) and Bland-Altman’s Limits of Agreement (LoA).
Results The DLNN showed rapid improvement within the first 10,000 training steps and stopped improving after 38,000 steps. There was a strong concordance between automatic and manual segmentations with median DS for skeletal muscle, visceral adipose tissue, and subcutaneous adipose tissue of 0.97 (interquartile range, IQR: 0.95-0.98), 0.98 (IQR: 0.95-0.98), and 0.95 (IQR: 0.92-0.97), respectively. Concordance correlations were excellent: skeletal muscle 0.964 (0.959-0.968), visceral adipose tissue 0.998 (0.998-0.998), and subcutaneous adipose tissue 0.992 (0.991-0.993). Bland-Altman metrics (relative to approximate median values in parentheses) indicated only small and clinically insignificant systematic offsets : 0.23 HU (0.5%), 1.26 cm2.m-2 (2.8%), -1.02 cm2.m-2 (1.7%), and 3.24 cm2.m-2 (4.6%) for skeletal muscle average radiodensity, skeletal muscle index, visceral adipose tissue index, and subcutaneous adipose tissue index, respectively. Assuming the decision thresholds by Martin et al. for sarcopenia and low muscle radiation attenuation, results for sensitivity (0.99 and 0.98 respectively), specificity (0.87 and 0.98 respectively), and overall accuracy (0.93) were all excellent.
Conclusion We developed and validated a deep learning model for automated analysis of body composition of patients with cancer. Due to the design of the DLNN, it can be easily implemented in various clinical infrastructures and used by other research groups to assess cancer patient cohorts or develop new models in other fields.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study did not receive any funding.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Medical Ethics Committee of Academic Hospital Maastricht and University of Maastricht waived ethical approval for this work. Research Ethics Committee of West of Scotland, Glasgow gave ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
Minor revisions to re-emphasise the extensive external and independent validation, which is a rarity for artificial intelligence models.
Data Availability
All data produced in the present study are available upon reasonable request to the authors.