Abstract
Cerebrovascular damage from small vessel disease (SVD) occurs in healthy and pathological aging. SVD markers, such as white matter hyperintensities (WMH), are commonly found in individuals over 60 and increase in prevalence with age. WMHs are detectable on standard MRI by adhering to the STRIVE criteria. Currently, visual assessment scales are used in clinical and research scenarios but is time-consuming and has rater variability, limiting its practicality. Addressing this issue, our study aimed to determine the most precise WMH segmentation software, offering insights into methodology and usability to balance clinical precision with practical application. This study employed a dataset comprising T1, FLAIR, and DWI images from 300 cognitively healthy older adults. WMHs in this cohort were evaluated using four automated neuroimaging tools: Lesion Prediction Algorithm (LPA) and Lesion Growth Algorithm (LGA) from Lesion Segmentation Tool (LST), Sequence Adaptive Multimodal Segmentation (SAMSEG), and Brain Intensity Abnormalities Classification Algorithm (BIANCA). Additionally, clinicians manually segmented WMHs in a subsample of 45 participants to establish a gold standard. The study assessed correlations with the Fazekas scale, algorithm performance, and the influence of WMH volume on reliability. Results indicated that supervised algorithms were superior, particularly in detecting small WMHs, and can improve their consistency when used in parallel with unsupervised tools. The research also proposed a biomarker for moderate vascular damage, derived from the top 95th percentile of WMH volume in healthy individuals aged 50 to 60. This biomarker effectively differentiated subgroups within the cohort, correlating with variations in brain structure and behavior.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
Lucia Torres-Simon and Alberto del Cerro-Leon acknowledge the financial support of predoctoral researchers grants from Universidad Complutense de Madrid (CT42/18-CT43/18 & CT58/21-CT59/21, respectively), that were co-funded by Santander bank. Database was supported by three Spanish projects: PSI2009-14415-C03-01, PSI2012-38375-C03-01 and PSI2015-68793-C3-1-R. Research reported in this publication was supported partially (FM, PC) by the National Institute on Aging of the National Institutes of Health under award numbers RF1AG074204 and RF1AG079324. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The Hospital Universitario San Carlos Ethics Committee (Madrid) approved the study, and all participants signed a written informed consent prior to participation.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
The text has undergone several changes and a section has been added to detect biomarkers of wmh with consequences for brain structure and function.