Abstract
Traditional machine learning (ML) approaches learn to recognize patterns in the data but fail to go beyond observing associations. Such data-driven methods can lack generalizability when the data is outside the independent and identically distributed (i.i.d) setting. Using causal inference can aid data-driven techniques to go beyond learning spurious associations and frame the data-generating process in a causal lens. We can combine domain expertise and traditional ML techniques to answer causal questions on the data. Hypothetical questions on alternate realities can also be answered with such a framework. In this paper, we estimate the causal effect of Pre-Exposure Prophylaxis (PrEP) on mortality in COVID-19 patients from an observational dataset of over 120,000 patients. With the help of medical experts, we hypothesize a causal graph that identifies the causal and non-causal associations, including the list of potential confounding variables. We use estimation techniques such as linear regression, matching, and machine learning (meta-learners) to estimate the causal effect. On average, our estimates show that taking PrEP can result in a 2.1% decrease in the death rate or a total of around 2,540 patients’ lives saved in the studied population.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study did not receive any funding
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The establishment of the data set is reviewed and approved by IRB directors.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.