LymphoML: An interpretable artificial intelligence-based method identifies morphologic features that correlate with lymphoma subtype
View ORCID ProfileVivek Shankar, Xiaoli Yang, Vrishab Krishna, Brent T. Tan, Oscar Silva, Rebecca Rojansky, Andrew Y. Ng, Fabiola Valvert, Edward L. Briercheck, David M. Weinstock, Yasodha Natkunam, Sebastian Fernandez-Pol, View ORCID ProfilePranav Rajpurkar
doi: https://doi.org/10.1101/2023.03.14.23287143
Vivek Shankar
1Department of Computer Science, Stanford University, Stanford, United States
Xiaoli Yang
2Department of Statistics, Stanford University, Stanford, United States
Vrishab Krishna
1Department of Computer Science, Stanford University, Stanford, United States
Brent T. Tan
3Department of Pathology, Stanford University School of Medicine, Stanford, United States
MD PhDOscar Silva
3Department of Pathology, Stanford University School of Medicine, Stanford, United States
MD PhDRebecca Rojansky
3Department of Pathology, Stanford University School of Medicine, Stanford, United States
MD PhDAndrew Y. Ng
1Department of Computer Science, Stanford University, Stanford, United States
PhDFabiola Valvert
5Laboratorio de Investigación Biológica en Cancer, Liga Nacional contra el Cancer/ Instituto de Cancerología, Guatemala
MDEdward L. Briercheck
6Fred Hutchinson Cancer Research Center and the University of Washington
MD PhDDavid M. Weinstock
7Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
8Merck Research Laboratory
MD PhDYasodha Natkunam
3Department of Pathology, Stanford University School of Medicine, Stanford, United States
MD PhDSebastian Fernandez-Pol
3Department of Pathology, Stanford University School of Medicine, Stanford, United States
MD PhDPranav Rajpurkar
4Department of Biomedical Informatics, Harvard Medical School, Boston, United States
PhDData Availability
All data produced in the present study are available upon reasonable request to the authors.
Posted March 17, 2023.
LymphoML: An interpretable artificial intelligence-based method identifies morphologic features that correlate with lymphoma subtype
Vivek Shankar, Xiaoli Yang, Vrishab Krishna, Brent T. Tan, Oscar Silva, Rebecca Rojansky, Andrew Y. Ng, Fabiola Valvert, Edward L. Briercheck, David M. Weinstock, Yasodha Natkunam, Sebastian Fernandez-Pol, Pranav Rajpurkar
medRxiv 2023.03.14.23287143; doi: https://doi.org/10.1101/2023.03.14.23287143
LymphoML: An interpretable artificial intelligence-based method identifies morphologic features that correlate with lymphoma subtype
Vivek Shankar, Xiaoli Yang, Vrishab Krishna, Brent T. Tan, Oscar Silva, Rebecca Rojansky, Andrew Y. Ng, Fabiola Valvert, Edward L. Briercheck, David M. Weinstock, Yasodha Natkunam, Sebastian Fernandez-Pol, Pranav Rajpurkar
medRxiv 2023.03.14.23287143; doi: https://doi.org/10.1101/2023.03.14.23287143
Subject Area
Subject Areas
- Addiction Medicine (399)
- Allergy and Immunology (710)
- Anesthesia (201)
- Cardiovascular Medicine (2949)
- Dermatology (249)
- Emergency Medicine (440)
- Epidemiology (12754)
- Forensic Medicine (12)
- Gastroenterology (829)
- Genetic and Genomic Medicine (4588)
- Geriatric Medicine (419)
- Health Economics (729)
- Health Informatics (2921)
- Health Policy (1069)
- Hematology (389)
- HIV/AIDS (924)
- Medical Education (426)
- Medical Ethics (115)
- Nephrology (469)
- Neurology (4366)
- Nursing (236)
- Nutrition (640)
- Oncology (2273)
- Ophthalmology (647)
- Orthopedics (258)
- Otolaryngology (325)
- Pain Medicine (279)
- Palliative Medicine (83)
- Pathology (501)
- Pediatrics (1197)
- Primary Care Research (496)
- Public and Global Health (6947)
- Radiology and Imaging (1529)
- Respiratory Medicine (915)
- Rheumatology (438)
- Sports Medicine (385)
- Surgery (489)
- Toxicology (60)
- Transplantation (212)
- Urology (181)