Abstract
When an auto-segmentation model needs to be applied to a new segmentation task, multiple decisions should be made about the pre-processing steps and training hyperparameters. These decisions are cumbersome and require a high level of expertise. To remedy this problem, I developed self-configuring CapsNets (scCapsNets) that can scan the training data as well as the computational resources that are available, and then self-configure most of their design options. In this study, we developed a self-configuring capsule network that can configure its design options with minimal user input. We showed that our self-configuring capsule netwrok can segment brain tumor components, namely edema and enhancing core of brain tumors, with high accuracy. Out model outperforms UNet-based models in the absence of data augmentation, is faster to train, and is computationally more efficient compared to UNet-based models.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
Arman Avesta is a PhD Student in the Investigative Medicine Program at Yale, which is supported by CTSA Grant Number UL1 TR001863 from the National Center for Advancing Translational Science, a component of the National Institutes of Health (NIH). This work was also directly supported by the National Center for Advancing Translational Sciences grant number KL2 TR001862 as well as by the Radiological Society of North Americas (RSNA) Fellow Research Grant Number RF2212. The contents of this article are solely the responsibility of the authors and do not necessarily represent the official views of NIH or RSNA.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The Institutional Review Board of Yale School of Medicine gave approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
Data Availability
All data produced in the present study are available upon reasonable request to the authors.