
Self-Configuring Capsule Networks for Brain Image Segmentation 
 
 
Authors 

 

Arman Avesta, MD,1,2,3 Sajid Hossain, BS,2,3 Mariam Aboian, MD, PhD,1 Harlan M. Krumholz, 

MD, MS,3,4 Sanjay Aneja, MD.2,3,5 

 

1 Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 

06510 

2 Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06510 

3 Center for Outcomes Research and Evaluation, Yale School of Medicine, New Haven, CT 

06510 

4 Division of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06510 

5 Department of Biomedical Engineering, Yale University, New Haven, CT 06510  

 

 
Corresponding author: 
 

Sanjay Aneja, MD       
Assistant Professor, Department of Therapeutic Radiology 
Yale School of Medicine 
Center for Outcomes Research and Evaluation 
195 Church St 6th Floor 
New Haven, CT 06510 
Email: sanjay.aneja@yale.edu 
Tel: Tel: 203-200-2100 
Fax: 203-737-1467 

  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 3, 2023. ; https://doi.org/10.1101/2023.02.28.23286596doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.02.28.23286596
http://creativecommons.org/licenses/by-nc/4.0/


Abstract: 

 

When an auto-segmentation model needs to be applied to a new segmentation task, 

multiple decisions should be made about the pre-processing steps and training 

hyperparameters. These decisions are cumbersome and require a high level of expertise. To 

remedy this problem, I developed self-configuring CapsNets (scCapsNets) that can scan the 

training data as well as the computational resources that are available, and then self-configure 

most of their design options. In this study, we developed a self-configuring capsule network 

that can configure its design options with minimal user input. We showed that our self-

configuring capsule netwrok can segment brain tumor components, namely edema and 

enhancing core of brain tumors, with high accuracy. Out model outperforms UNet-based 

models in the absence of data augmentation, is faster to train, and is computationally more 

efficient compared to UNet-based models.  

 

 

Introduction 
 

Despite the increasing popularity of deep-learning auto-segmentation methods, their 

implementation into clinical practice has been hindered by the need to configure their design 

options, which require a high level of expertise.
1,2

 If the design options of a deep-learning 

method are not optimally chosen for a particular task, the performance of the model drops 

significantly.
3
 This makes the process of adapting and training a deep-learning auto-

segmentation model quite challenging, particularly in auto-segmenting 3D biomedical images 

where the image properties vary drastically.
3
 Examples of image properties that vary from one 
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dataset to another include the image size, voxel spacing, voxel anisotropy, and the 

segmentation class ratios. An additional layer of complexity is posed by varying computational 

resources that are available for model training and deployment. Examples of these 

computational resources include the number of CPU cores, the amount of RAM, and the 

amount of GPU memory. 

The properties of the input images and the computational resources that are available 

vary from one clinical setting to another, affecting the optimal design options that should be 

chosen for the training and deployment of an auto-segmentation model. Examples of the 

design options that should be chosen for each particular task, which depend on the input 

images and the computational resources that are available, include pre-processing steps such 

as image resampling and resizing strategy, patch size, class sampling strategy, batch size, and 

learning rate scheduling.
2
  

Using empirical methods to choose the design options of deep-learning auto-

segmentation models often leads to suboptimal design choices.
4
 Examples of the design 

options that should be chosen for each particular task, which depend on the input images and 

the computational resources that are available, include pre-processing steps such as image 

resampling and resizing strategy, data augmentation strategy, patch size, class sampling 

strategy, batch size, and learning rate scheduling strategy. Optimization methods proposed by 

previous studies in automatic machine learning (AutoML) are often not feasible due to the high-

dimensional nature of the combinations of all design options.
4
 Therefore, these design options 

are often chosen by experts using an iterative trial-and-error process, which often leads to 
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suboptimal auto-segmentation pipelines. Small errors in choosing the design options often 

leads to large drops in model performance.
1,2,4

  

 The problem of choosing the optimal design options for a model becomes even more 

cumbersome in the presence of real-world heterogeneous data. While most publicly available 

biomedical imaging datasets contain highly curated, high-resolution images with minimal 

imaging artifacts, the images in our clinical practice often have vastly different image 

resolution, image quality, varying degrees of voxel anisotropy, and imaging artifacts. In this 

setting, choosing the optimal design options for an auto-segmentation model would be difficult 

even for an experienced operator.
2,4

  

 

In this study, I aim at automating the process of choosing these design options by 

developing a capsule network model that can scan the training data as well as the 

computational resources that are available, and then self-configure most of its design options. I 

propose that a self-configuring capsule network (scCapsNet) that does not need a human 

expert to optimize its design options would facilitate clinical implementation. 

 

The Yale Glioma Dataset 
 

I used the images of 755 patients in the Yale Glioma Dataset that were scanned across 

several healthcare facilities within the Yale New Haven Health system. This dataset contains a 

wide variety of brain tumors (Table 5.1) that span benign grade 1 tumors to malignant grade 4 

glioblastomas (Table 5.2). The images in this dataset are highly heterogeneous because they are 

scanned using 14 distinct MR scanners, dissimilar MR acquisition parameters, various scanning 
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orientations (axial, sagittal, coronal, and 3D acquisitions), different voxel spacings, and various 

degrees of voxel anisotropy (Figure 5.1). I randomly split the patients in this dataset into 

training (603 MRI patients, 80% of data), validation (75 patients, 10% of data), and test (75 

patients, 10% of data) sets. Table 5.2 provides patient demographics. This study was approved 

by the Institutional Review Board of Yale School of Medicine (IRB number 2000027592). 

 

Segmentation Targets: Components of Brain Tumors 

 

 I aimed at developing scCapsNet models that can segment two tumor components: 1) 

the tumor edema/gliosis on the fluid-attenuated inversion recovery (FLAIR) images; and 2) the 

tumor enhancing core on post-contrast T1-weighted images. Segmenting these two tumor 

components are clinically important for radiation therapy, neurosurgery, and treatment 

response monitoring.
5–7

   

 The tumors in this dataset were manually segmented within the picture archiving and 

communication system (PACS) of Yale New Haven Hospital. Five medical students, who were 

trained to manually segment the tumor components, manually segmented the images for 1,001 

patients. Of these, the segmentations of 755 patients were checked, manually edited, and 

finalized by a board-certified attending neuroradiologist (Mariam S. Aboian, MD, PhD). I used 

this subgroup of 755 patients for training and testing my models. 
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Figure 5.1: the Yale Glioma Dataset contains a large variety of MR images that were acquired using 16

MRI scanners with dissimilar MR acquisition parameters. For instance, the FLAIR images in this dataset

include high-quality, high-resolution images with isotropic voxel spacing of 1×1×1 mm (A), axial MR

acquisitions with high resolution in the axial plane but thick axial slices with voxel spacing of 0.4×0.4×7

mm (B), and coronal MR acquisitions with high resolution in the coronal plane but thick coronal slices with

voxel spacing of 0.5×0.5×14 mm (C).  
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Table 5.1: Brain tumor types that are represented within the Yale Glioma Dataset. 

Diagnosis     Percentage 

Glioblastoma                                      50.6% 

Anaplastic astrocytoma                     6.4% 

Oligodendroglioma                             6.3% 

Glioma, not otherwise specified                4.1% 

 Pilocytic astrocytoma                        3.9% 

Anaplastic oligodendroglioma          2.4% 

Astrocytoma                                 2.2% 

Diffuse astrocytoma                      1.7% 

Oligoastrocytoma                          1.6% 

Gliosarcoma                                  0.3% 

Pilomyxoid astrocytoma                  0.2% 

Subependymal giant cell astrocytoma           0.2% 

Pleomorphic xanthoastrocytoma               
0.2% 

Low grade glial neoplasm                        0.1% 

Tectal glioma                                 0.1% 

Ganglioglioma                            0.1% 

Pilomyxoid astrocytoma WHO Grade 2      0.1% 

Pylomyxoid astrocytoma                     0.1% 

Desmoplastic infantile ganglioma/astrocytoma    0.1% 

Gliosarcoma                                        0.1% 

Anaplastic ependymal tumor                        0.1% 
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Table 5.2: Study participants tabulated by the training, validation, and test sets.  

Data 

Partitions 

Number 

of 

Patients 

Age 

mean ± 

SD 

Gender† Tumor Grade†† 

Training set 603 53 ± 20 
41% F, 59% 

M 
8% I, 11% II, 12% III, 69% IV 

Validation 

set 
76 50 ± 19 

41% F, 59% 

M 
5% I, 9% II, 11% III, 75% IV 

Test set 76 53 ± 23 
40% F, 60% 

M 
5% I, 15% II, 8% III, 72% IV 

 

† F: female; M: male. 

†† I, II, III and IV respectively represent grade 1, 2, 3, and 4 gliomas. 
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Automated Paradigm for Determining Computational Resources 
 

 The available computational resources determine key design options for image pre-

processing and model training. For instance, a larger GPU memory allows for larger batch and 

patch sizes. To develop a self-configuring model, I used the following packages to automatically 

determine the computational resources that are available: 

1)  Number of CPU cores: I used the multiprocessing package in Python to read the number of 

available CPU cores.8 I set aside one CPU core for the operating system and used the 

remaining CPU cores for parallel image processing. Using this technique, I parallelized time-

consuming pre-processing steps including bias field correction and image resampling, as well 

as time-consuming data loading steps during model training. 

2) Available RAM: I used the psutil (process and system utilities) package in Python to read the 

amount of free RAM that is available for computing.9 To accelerate model training, I 

implemented a data loader that prepares a queue of input/output pairs using the CPU and 

stores this queue in RAM, ready to be used by the GPU to train the model. The length of this 

input/output queue is automatically determined by the amount of available RAM. 

3) Available GPU memory: I used the NVIDIA Management Library’s pynvml package in 

Python to read the amount of free GPU memory that is available for computing.10 I defined 

configurations in my code that automatically increases the batch size and patch size if more 

GPU memory is available. 

I have provided a sample code in Appendix 5 that shows how to use these three packages to 

read the available computational resources. 
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Automated Paradigm for MRI Pre-Processing 
 

 I designed an automated pre-processing paradigm that can pre-process MRIs with 

different MR sequences, acquisition parameters, voxel spacings, and voxel anisotropies while 

requiring minimal user input. The steps of pre-processing include: 

 

1) I used HD-BET for brain extraction, which a deep-learning method that can extract the brain 

from images that contain space-occupying lesions.
11

 To ensure that HD-BET correctly extracts 

the brain from images in the Yale Glioma Dataset, I randomly selected 100 MRIs and checked 

the brain-extracted images. All randomly-selected images showed correct brain extraction 

without major issues. 

 

2) I used the Simple ITK package for bias field correction.
12

 Because bias field correction using 

this method is a time-consuming step, I parallelized this step by simultaneously processing 

multiple images using multiple CPU cores. The number of parallel processes is automatically 

determined by the model, depending on the available CPU cores and the amount of available 

RAM.  

 

3) Each image and its accompanying ground-truth segmentation image are then cropped 

around the brain confines, thereby reducing their size. 

4) The voxel intensities of the images are then normalized using Z-normalization.
13
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5) Label remapping is done if the segmentation labels are not encoded by consecutive numbers 

starting from 0. In label remapping, the segmentation labels are automatically remapped so 

that the background is encoded by 0 and the foreground labels are encoded by consecutive 

numbers starting from 1.
13

 

 

6) Resampling is done to transform all images into the same voxel spacing. first, all images in 

the training set are scanned for their voxel spacing. Then, the median voxel spacing of all 

images is computed. Finally, all images in the dataset are resampled onto this median voxel 

spacing. For voxels that are isotropic or near-isotropic, third-order cubic interpolation is used 

for resampling. For voxels that are highly anisotropic, resampling in the direction that has the 

largest voxel spacing is done using linear interpolation (to prevent ghosting artifacts caused by 

thick-slice resampling). Segmentations are resampled using zero-order interpolation after one-

hot-encoding. Zero-order interpolation for segmentation labels is necessary to prevent 

generation of non-integer numbers that do not represent any segmentation label.
13

 

 

7) Finally, the quality of all pre-processing steps was checked for each image to ensure that the 

shape, voxel spacing, coordinate system, and the affine transform from the image space to the 

scanner space is consistent between each raw image and its accompanying ground-truth 

segmentation image. Finally, the preprocessed images and segmentation masks are saved as 

NIfTI files.
14
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Accelerated Data Loading  
 

To make the model training faster, I implemented a data loading method that loads the 

input image and the accompanying segmentation, randomly samples patches from them, forms 

data batches, and finally forms a queue of input/output batches that are ready to be used by 

the GPU for model training. These computations are done using the CPU and RAM while the 

model is trained on the GPU in parallel. Because the CPU and RAM prepare input/output pairs 

at the same time that the GPU trains the model, the two processes do not wait for each other, 

resulting in accelerated training that is about twice faster.
13

 Additionally, several CPU cores are 

recruited to prepare the input/output pairs in parallel. The length of the inputs/outputs queue 

is automatically choses depending on the batch size, patch size, and the amount of available 

RAM.  

 

Comparing Self-Configuring Capsule Networks with nnUNets and UNets 
 

In addition to training the self-configuring capsule network, I also trained nnUNet and 

UNet models using the same training data,
15–18

 followed by comparing their segmentation 

accuracy and computational efficiency using the same test data. Because the nnUNet has its 

own pre-processing pipeline, I fed the nnUNet with raw images and accompanying 

segmentation. 

Because I wanted to compare the performance of scCapsNet with UNet-based models in 

the absence of data augmentation and because the nnUNet does data augmentation 

automatically, I also trained and tested a UNet using the data that was pre-processed by the 
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scCapsNet pre-processing pipeline. The architecture and training hyperparameters of the UNet 

are provided in Chapter 3 and Appendix 3. 

Auto-Segmentation Performance Metrics 
 

I compared the segmentation accuracy of the scCapsNet with nnUNet in auto-

segmenting the tumor edema/gliosis on FLAIR images as well as the tumor enhancing core on 

post-contrast T1-weighted images. Segmentation accuracy was quantified using Dice scores. To 

compare the segmentation accuracy of scCapsNet with UNet-based models in the absence of 

data augmentation, I trained and tested a UNet using the pre-processed data that was used to 

train the scCapsNet without data augmentation. To compare the computational speed during 

training, I compared the time that the scCapsNet and nnUNet would need to converge to the 

Dice score of 80% over the validation set. To compare the computational speed during 

deployment, I compared the time that the scCapsNet and nnUNet would need to pre-process 

and segment a brain MRI. Finally, I compared the GPU memory that is required by the 

scCapsNet and nnUNet models.  

 

Software and Hardware used for Model Implementation 
 

Image pre-processing was done using Python (version 3.10), SimpleITK (version 2.2.0),
12

 

TorchIO (version 0.18.78),
13

 NiBabel (version 5.0.0),
19

 and HD-BET.
11

 PyTorch (version 1.13.1) 

was used for model development and testing. SciPy (version 1.6.0) was used for statistical 

testing. Training and testing of the models were run on GPU-equipped servers (4 vCPUs, 16 GB 
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RAM, 16 GB NVIDIA GPU). The code used to train and test our models is available on our lab’s 

GitHub page:  

https://github.com/Aneja-Lab-Yale/Aneja-Lab-Public-scCapsNet. 

Auto-Segmentation Performance Results 
  

 The nnUNet slightly outperformed the scCapsNet model in auto-segmented the tumor 

edema/gliosis on FLAIR images, with average Dice scores of 86% and 89% for the two models, 

respectively. The scCapsNet slightly outperformed the nnUNet in auto-segmenting the tumor 

enhancing core on post-contrast T1-weighted images, with average Dice scores of 89% and 

88%, respectively. However, none of the differences between the two models were statistically 

significant (Table 5.3). 

In the absence of data augmentation, there was a drop in the performance of the UNet-

based models. The UNet auto-segmented the FLAIR and post-contrast T1-weighted images with 

Dice scores of 84% and 85%, respectively. The scCapsNet outperformed the UNet-based models 

in the absence of data augmentation (Table 5.4). 

The scCapsNet converges faster during training compared to nnUNet. During training, 

the scCapsNet and nnUNet models reached the Dice score of 80% over the validation set after 

13 and 38 hours, respectively (Figure 5.3). During deployment, the scCapsNet and nnUNet 

respectively require 4 and 3 minutes to pre-process and segment a brain MRI. Out of the 4 

minutes, the scCapsNet spends more than 3 minutes on two pre-processing steps: brain 

extraction and bias field correction. 

The scCapsNet is computationally more efficient compared to nnUNet. The scCapsNet 

and nnUNet respectively have 7,400 and 90,300 trainable parameters, which respectively 
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occupy 28 and 345 megabytes on the GPU memory. The total sizes of the scCapsNet and 

nnUNet are respectively 5 and 31 gigabytes (Figure 5.4).   
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Figure 5.2: Comparing scCapsNet and nnUNet in auto-segmenting tumor components in a patient with

glioblastoma. The top row shows auto-segmentation of the tumor edema/gliosis on the FLAIR image, and

the bottom row shows auto-segmentation of the tumor enhancing core on the post-contrast T1-weighted

(T1C+) image.  
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Table 5.3: Comparing the performance of scCapsNet and nnUNet in segmenting tumor 

edema/gliosis on FLAIR images, and the enhancing core of the tumor on post-contrast T1-

weighted images.  

MRI Sequence scCapsNet Dice  
(95% CI) 

nnUNet Dice 
(95% CI) 

scCapsNet vs nnUNet 
P-value† 

FLAIR 86% (84 to 88) 89% (87 to 91) 0.09 

Post-contrast 
T1 89% (87 to 91) 88% (86 to 90) 0.27 
 

† paired-samples t-test, degrees of freedom = 75 - 1 = 74 

 

 

 

 

 

 

 

 

Table 5.4: Comparing the performance of scCapsNet and UNet without data augmentation.  

MRI Sequence scCapsNet Dice  
(95% CI) 

UNet Dice 
(95% CI) 

scCapsNet vs UNet 
P-value† 

FLAIR 86% (84 to 88) 84% (82 to 
86) 0.15 

Post-contrast 
T1 89% (88 to 91) 85% (83 to 

87) 0.02 
 

† paired-samples t-test, degrees of freedom = 75 - 1 = 74 
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Figure 5.3: Comparing the computational speed between the scCapsNet and nnUNet models. The

scCapsNet converges faster during training and reaches the Dice score of 80% after 13 hours, while the

nnUNet reaches this Dice score after 38 hours. During deployment, the scCapsNet and nnUNet

respectively require 4 and 3 minutes to pre-process and segment a brain MRI. The scCapsNet is slower

during deployment because two pre-processing steps, namely skull stripping and bias field correction, are

slow processes that take more than 3 minutes to complete. Notably, the nnUNet does not perform these

two pre-processing steps.  

  

he 

he 

et 

er 

re 

se 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 3, 2023. ; https://doi.org/10.1101/2023.02.28.23286596doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.28.23286596
http://creativecommons.org/licenses/by-nc/4.0/


 

Figure 5.4: Comparing the GPU memory required by the scCapsNet and nnUNet models. The bars

represent the computational memory required to accommodate the total size of each model, including the

parameters plus the cumulative size of the forward- and backward-pass feature volumes. The total sizes

of the scCapsNet and nnUNet models are respectively 5 and 31 gigabytes. 
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Brain MRI Auto-Segmentation using Self-Configuring Capsule Networks 
 

 In this chapter, I aimed at developing a self-configuring capsule network (scCapsNet) 

that is feasible for clinical implementation. The scCapsNet can self-configure its design options 

by considering the images that should be auto-segmented as well as the computational 

resources that are available. I showed that the scCapsNet can segment brain tumor 

components with high accuracy. Additionally, I showed that the scCapsNet outperforms UNet-

based models in the absence of data augmentation, is faster to train, and is computationally 

more efficient compared to UNet-based models.  

My results extend the prior literature in key ways. I developed the first self-configuring 

capsule network and comprehensively benchmarked its segmentation accuracy and 

computational efficiency. To train and test my models, I used a large dataset of clinical MRIs 

that more closely represent real-life MRIs in our clinical practice, with the presence of 

suboptimal image qualities and MRI artifacts. Using this dataset, I compared the performance 

of the scCapsNet against the most successful auto-segmentation model that is currently used, 

namely nnUNet.
2
 Therefore, my results provide practical benchmarking between the two 

methods on real-life clinical MRI. 

My results corroborate previous studies showing that self-configuring auto-

segmentation models are highly valuable for clinical implementation.
1,2,20–29

 Isensee et al 

developed the nnUNet model, which is a self-configuring model based on UNets.
2
 While the 

nnUNet also self-configures its design options by considering the data and the computational 

resources, the processes by which the nnUNet chooses its design options are different from my 

approach. The nnUNet model runs a few experiments at the start of the training, changing the 
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patch size, batch size, and model depth until the GPU memory runs out. These experiments 

determine the largest patch size, batch size, and model depth that the GPU memory can 

accommodate.  

The scCapsNet, unlike the nnUNet, directly reads the computational resources through 

Python modules, without the need to run any experiments. The computational resources that 

are read are the GPU memory, RAM capacity, and the number of CPU cores. Then, the model 

assigns the appropriate patch size, batch size, length of the inputs/outputs queue that are 

prepared by the CPU during training, and the number of parallel CPU cores that are recruited, 

given the computational resources that are available. Notably, the nnUNet model requires user 

input to determine the number of CPU cores that should be recruited. I propose that my 

approach is computationally more efficient. Additionally, the nnUNet does not perform skull 

stripping and bias field correction during pre-processing.
2
 

The scCapsNet converges faster during training because it has fewer trainable 

parameters and because of the accelerated data loading methods that are implemented into 

the scCapsNet model. The accelerated data loading paradigm decreases the training time by a 

factor of two. However, the scCapsNet is slightly slower than the nnUNet during deployment, 

since it requires four minutes to pre-process and segment a brain MRI. Of these four minutes, 

more than three minutes are spent on two pre-processing steps: skull stripping and bias field 

correction. Notably, the nnUNet model does not perform these two steps during pre-

processing. I am currently studying the necessity of brain extraction and bias field correction 

during pre-processing. As I will discuss in Chapter 6, I am also studying the use of data 

augmentation techniques to simulate bias field inhomogeneities so that we can feed the 
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scCapsNet model with images that contain bias field inhomogeneities without the need for 

correcting them. 

My experiments have several notable limitations. First, I only compared the 

performance of scCapsNet and nnUNet models in segmenting brain tumors on MR images. The 

results of my experiments may not generalize to other brain pathologies, imaging modalities, or 

other body organs. Second, I used the Yale Glioma Dataset benchmark the performance of my 

models. My results may not generalize to other healthcare facilities with different patient 

populations, dissimilar distributions of brain tumors, or different MR scanners. Nonetheless, the 

images in the Yale Glioma Dataset represent a wide range of brain gliomas, MR scanners, and 

MR acquisition parameters. Finally, the comparisons between the computational speed of 

scCapsNet and nnUNet models depend on the computational resources that are available. 

These comparisons may not generalize to other computational settings. However, I used 

computational resources that are commonplace in the deep learning computing units.  

 

Conclusion 
 

 In this chapter, I developed a self-configuring capsule network that can auto-segment 

brain MRIs with minimal, if any, user input. I showed that this model can segment the 

components of brain tumors with high accuracy and is computationally more efficient that 

currently used auto-segmentation models. In the next chapter, I will explore how this model, or 

any auto-segmentation model, can be brought to the bedside to help our patients. 
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