ABSTRACT
Objective To investigate hemispheric effects of directional versus ring subthalamic nucleus (STN) deep brain stimulation (DBS) surgery on cognitive function in patients with advanced Parkinson’s disease (PD).
Methods We examined 31 PD patients (Left STN n = 17; Right STN n = 14) who underwent unilateral subthalamic nucleus (STN) DBS as part of a NIH-sponsored randomized, cross-over, double-blind (ring vs directional) clinical trial. Outcome measures were tests of verbal fluency, auditory-verbal memory, and response inhibition. First, all participants were pooled together to study the effects of directional versus ring stimulation. Then, we stratified the groups by surgery hemisphere and studied the longitudinal changes in cognition post-unilateral STN DBS.
Results Relative to pre-DBS cognitive baseline performances, there were no group changes in cognition following unilateral DBS for either directional or ring stimulation. However, assessment of unilateral DBS by hemisphere revealed a different pattern. The left STN DBS group had lower verbal fluency than the right STN group (t(20.66 = -2.50, p = 0.02). Over a period of eight months post-DBS, verbal fluency declined in the left STN DBS group (p = 0.013) and improved in the right STN DBS group over time (p < .001). Similarly, response inhibition improved following right STN DBS (p = 0.031). Immediate recall did not significantly differ over time, nor was it affected by implant hemisphere, but delayed recall equivalently declined over time for both left and right STN DBS groups (left STN DBS p = 0.001, right STN DBS differ from left STN DBS p = 0.794).
Conclusions Directional and ring DBS did not differentially or adversely affect cognition over time. Regarding hemisphere effects, verbal fluency decline was observed in those who received left STN DBS, along with the left and right STN DBS declines in delayed memory. The left STN DBS verbal fluency decrement is consistent with prior bilateral DBS research, likely reflecting disruption of the basal-ganglia-thalamocortical network connecting STN and inferior frontal gyrus. Interestingly, we found an improvement in verbal fluency and response inhibition following right STN DBS. It is possible that unilateral STN DBS, particularly in the right hemisphere, may mitigate cognitive decline.
Competing Interest Statement
The authors have declared no competing interest.
Clinical Trial
NCT03353688
Funding Statement
We are grateful for funding from the National Institutes of Health BRAIN Initiative (1UH3NS100553) and the Michael J. Fox Foundation (both to HW).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The United States Food and Drug Administration and The University of Alabama at Birmingham Institutional Review Board gave ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
Funding: We are grateful for funding from the National Institutes of Health BRAIN Initiative (1UH3NS100553) and the Michael J. Fox Foundation (both to HW).
Data Availability
As part of the NIH BRAIN Initiative, all data are available online.