Abstract
Background Polygenic risk scores (PRS) are linear combinations of genetic markers weighted by effect size that are commonly used to predict disease risk. For complex heritable diseases such as late onset Alzheimer’s disease (LOAD), PRS models fail to capture much of the heritability. Additionally, PRS models are highly dependent on the population structure of data on which effect sizes are assessed, and have poor generalizability to new data.
Objective The goal of this study is to construct a paragenic risk score that, in addition to single genetic marker data used in PRS, incorporates epistatic interaction features and machine learning methods to predict lifetime risk for LOAD.
Methods We construct a new state-of-the-art genetic model for lifetime risk of Alzheimer’s disease. Our approach innovates over PRS models in two ways: First, by directly incorporating epistatic interactions between SNP loci using an evolutionary algorithm guided by shared pathway information; and second, by estimating risk via an ensemble of machine learning models (gradient boosting machines and deep learning) instead of simple logistic regression. We compare the paragenic model to a PRS model from the literature trained on the same dataset.
Results The paragenic model is significantly more accurate than the PRS model under 10-fold cross-validation, obtaining an AUC of 83% and near-clinically significant matched sensitivity/specificity of 75%, and remains significantly more accurate when evaluated on an independent holdout dataset. Additionally, the paragenic model maintains accuracy within APOE genotypes.
Conclusion Paragenic models show potential for improving lifetime disease risk prediction for complex heritable diseases such as LOAD over PRS models.
Competing Interest Statement
SH, JC, SA, JO, SC, and EG are employees of Parabon NanoLabs, Inc. CC has received research support from: GSK and EISAI. The funders of the study had no role in the collection, analysis, or interpretation of data; in the writing of the report; or in the decision to submit the paper for publication. CC is a member of the advisory board of Vivid Genomics and Circular Genomics. TW is a co-founder of revXon.
Funding Statement
Research reported in this publication was supported by the National Institute on Aging of the National Institutes of Health under award number 2R44AG050366-02. Participant recruitment at Emory was supported in part by awards P30 AG066511 and R01 AG070937.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Advarra IRB gave ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.