ABSTRACT
Importance Artificial intelligence (AI) applications in health care have been effective in many areas of medicine, but they are often trained for a single task using labeled data, making deployment and generalizability challenging. Whether a general-purpose AI language model can perform diagnosis and triage is unknown.
Objective Compare the general-purpose Generative Pre-trained Transformer 3 (GPT-3) AI model’s diagnostic and triage performance to attending physicians and lay adults who use the Internet.
Design We compared the accuracy of GPT-3’s diagnostic and triage ability for 48 validated case vignettes of both common (e.g., viral illness) and severe (e.g., heart attack) conditions to lay people and practicing physicians. Finally, we examined how well calibrated GPT-3’s confidence was for diagnosis and triage.
Setting and Participants The GPT-3 model, a nationally representative sample of lay people, and practicing physicians.
Exposure Validated case vignettes (<60 words; <6th grade reading level).
Main Outcomes and Measures Correct diagnosis, correct triage.
Results Among all cases, GPT-3 replied with the correct diagnosis in its top 3 for 88% (95% CI, 75% to 94%) of cases, compared to 54% (95% CI, 53% to 55%) for lay individuals (p<0.001) and 96% (95% CI, 94% to 97%) for physicians (p=0.0354). GPT-3 triaged (71% correct; 95% CI, 57% to 82%) similarly to lay individuals (74%; 95% CI, 73% to 75%; p=0.73); both were significantly worse than physicians (91%; 95% CI, 89% to 93%; p<0.001). As measured by the Brier score, GPT-3 confidence in its top prediction was reasonably well-calibrated for diagnosis (Brier score = 0.18) and triage (Brier score = 0.22).
Conclusions and Relevance A general-purpose AI language model without any content-specific training could perform diagnosis at levels close to, but below physicians and better than lay individuals. The model was performed less well on triage, where its performance was closer to that of lay individuals.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
Andrew Beam: Dr. Beam's work on this project was partially supported by funding from the National Heart, Lung, and Blood Institute (K01 HL141771).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
All data produced are available online at https://github.com/beamlab-hsph/gpt3-clinical-vignettes