A large-scale machine learning study of sociodemographic factors contributing to COVID-19 severity
View ORCID ProfileMarko Tumbas, View ORCID ProfileSofija Markovic, View ORCID ProfileIgor Salom, View ORCID ProfileMarko Djordjevic
doi: https://doi.org/10.1101/2023.01.27.23285043
Marko Tumbas
1Quantitative Biology Group, Faculty of Biology, University of Belgrade, Serbia
Sofija Markovic
1Quantitative Biology Group, Faculty of Biology, University of Belgrade, Serbia
Igor Salom
2Institute of Physics Belgrade, National Institute of the Republic of Serbia, University of Belgrade, Serbia
Marko Djordjevic
1Quantitative Biology Group, Faculty of Biology, University of Belgrade, Serbia

Data Availability
All data produced in the present study are available upon reasonable request to the authors.
Posted January 29, 2023.
A large-scale machine learning study of sociodemographic factors contributing to COVID-19 severity
Marko Tumbas, Sofija Markovic, Igor Salom, Marko Djordjevic
medRxiv 2023.01.27.23285043; doi: https://doi.org/10.1101/2023.01.27.23285043
Subject Area
Subject Areas
- Addiction Medicine (412)
- Allergy and Immunology (726)
- Anesthesia (214)
- Cardiovascular Medicine (3112)
- Dermatology (263)
- Emergency Medicine (463)
- Epidemiology (13049)
- Forensic Medicine (13)
- Gastroenterology (862)
- Genetic and Genomic Medicine (4871)
- Geriatric Medicine (449)
- Health Economics (751)
- Health Informatics (3072)
- Health Policy (1109)
- Hematology (410)
- HIV/AIDS (963)
- Medical Education (453)
- Medical Ethics (120)
- Nephrology (502)
- Neurology (4641)
- Nursing (247)
- Nutrition (689)
- Oncology (2395)
- Ophthalmology (679)
- Orthopedics (270)
- Otolaryngology (333)
- Pain Medicine (307)
- Palliative Medicine (88)
- Pathology (516)
- Pediatrics (1243)
- Primary Care Research (522)
- Public and Global Health (7206)
- Radiology and Imaging (1607)
- Respiratory Medicine (944)
- Rheumatology (461)
- Sports Medicine (403)
- Surgery (514)
- Toxicology (65)
- Transplantation (222)
- Urology (190)