Abstract
An early effective screening and grading of COVID-19 has become imperative towards optimizing the limited available resources of the medical facilities. An automated segmentation of the infected volumes in lung CT is expected to significantly aid in the diagnosis and care of patients. However, an accurate demarcation of lesions remains problematic due to their irregular structure and location(s) within the lung.
A novel deep learning architecture, Composite Deep network with Feature Weighting (CDNetFW), is proposed for efficient delineation of infected regions from lung CT images. Initially a coarser-segmentation is performed directly at shallower levels, thereby facilitating discovery of robust and discriminatory characteristics in the hidden layers. The novel feature weighting module helps prioritise relevant feature maps to be probed, along with those regions containing crucial information within these maps. This is followed by estimating the severity of the disease.
The deep network CDNetFW has been shown to outperform several state-of-the-art architectures in the COVID-19 lesion segmentation task, as measured by experimental results on CT slices from publicly available datasets, especially when it comes to defining structures involving complex geometries.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported by the J. C. Bose National Fellowship, sanction no. JCB/2020/000033 of S. Mitra.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
Email: duttapallabi2907{at}gmail.com, sushmita{at}isical.ac.in
The revised version contains updation in the title of the manuscript with changes in the methodology section.
Data Availability
All data sources in the present work are contained in the manuscript