Abstract
Trends in COVID-19 infection have changed throughout the pandemic due to myriad factors, including changes in transmission driven by social behavior, vaccine development and uptake, mutations in the virus genome, and public health policies. Mass testing was an essential control measure for curtailing the burden of COVID-19 and monitoring the magnitude of the pandemic during its multiple phases. However, as the pandemic progressed, new preventive and surveillance mechanisms emerged. Implementing vaccine programs, wastewater (WW) surveillance, and at-home COVID-19 tests reduced the demand for mass severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing. This paper proposes a sequential Bayesian approach to estimate the COVID-19 positivity rate (PR) using SARS-CoV-2 RNA concentrations measured in WW through an adaptive scheme incorporating changes in virus dynamics. PR estimates are used to compute thresholds for WW data using the CDC thresholds for low, substantial, and high transmission. The effective reproductive number estimates are calculated using PR estimates from the WW data. This approach provides insights into the dynamics of the virus evolution and an analytical framework that combines different data sources to continue monitoring the COVID-19 trends. These results can provide public health guidance to reduce the burden of future outbreaks as new variants continue to emerge. The proposed modeling framework was applied to the City of Davis and the campus of the University of California Davis.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This research was supported by the National Center for Advancing Translational Sciences, National Institutes of Health, through grant number UL1 TR001860. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. This research was also supported by Healthy Davis Together (HDT) programs at the University of California, Davis, and the Centers for Disease Control and Prevention Foundation. Additionally, we thank Colleen C. Naughton, Alexandria B. Boehm, and Marlene K. Wolfe for their valuable comments.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This study was determined to be exempt from institutional review board review by the University of California, Davis IRB Administration. IRB ID: 45 CFR 46.102.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
↵+ co-first author
Corrected title: Missing an "r" in "wastewater. "wastewate" -> "wastewater".
Data Availability
All data produced in the present study are available upon reasonable request to the authors.
https://github.com/mdazatorres/Bayesian_sequential_approach_PR_WW