ABSTRACT
The high morbidity of acute respiratory infections constitutes a crucial global health burden. In particular, for SARS-CoV-2, non-pharmaceutical intervention geared to enforce social distancing policies, vaccination, and treatments will remain an essential part of public health policies to mitigate and control disease outbreaks. However, the implementation of mitigation measures directed to increase social distancing when the risk of contagion is a complex enterprise because of the impact of NPI on beliefs, political views, economic issues, and, in general, public perception. The way of implementing these mitigation policies studied in this work is the so-called traffic-light monitoring system that attempts to regulate the application of measures that include restrictions on mobility and the size of meetings, among other non-pharmaceutical strategies. Balanced enforcement and relaxation of measures guided through a traffic-light system that considers public risk perception and economic costs may improve the public health benefit of the policies while reducing their cost. We derive a model for the epidemiological traffic-light policies based on the best response for trigger measures driven by the risk perception of people, instant reproduction number, and the prevalence of a hypothetical acute respiratory infection. With numerical experiments, we evaluate and identify the role of appreciation from a hypothetical controller that could opt for protocols aligned with the cost due to the burden of the underlying disease and the economic cost of implementing measures. As the world faces new acute respiratory outbreaks, our results provide a methodology to evaluate and develop traffic light policies resulting from a delicate balance between health benefits and economic implications.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study did not receive any funding
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
saul.diazinfante{at}unison.mx (S. Diaz-Infante); jx.velasco{at}im.unam.mx (J.X. Velasco-Hernández)
https://saul-diaz-infante-velasco.netlify.app/ (S. Diaz-Infante)
https://www.linkedin.com/profile/view?id=saul-diaz-infante-velasco-57b1a7188 (S. Diaz-Infante)
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.