Abstract
Cocaine use disorder (CUD) is characterized by a loss of control over drug intake and is associated with structural, functional, and molecular alterations in the brain. At the molecular level, epigenetic alterations are hypothesized to contribute to the higher-level functional and structural brain changes as observed in CUD. Most evidence of cocaine-associated epigenetic changes comes from animal studies while only a few studies have been performed using human tissue. We investigated epigenome-wide DNA methylation signatures of CUD in human postmortem brain tissue of Brodmann Area 9 (BA9). A total of N = 42 BA9 brain samples were obtained from N = 21 individuals with CUD and N = 21 individuals without a CUD diagnosis. We performed an epigenome-wide association study and analyzed CUD-associated differentially methylated regions (DMRs). To assess the functional role of CUD-associated differential methylation, we performed Gene Ontology enrichment analyses and characterized co-methylation networks using a weighted correlation network analysis. We further investigated epigenetic age in CUD using epigenetic clocks for the assessment of biological age. While no CpG site was associated with CUD at epigenome-wide significance in BA9, we detected a total of 20 CUD-associated DMRs. After annotation of DMRs to genes, we identified NPFFR2 and KALRN for which a previous role in the behavioral response to cocaine in rodents is known. Three of the four identified CUD-associated co-methylation modules were functionally related to neurotransmission and neuroplasticity. Protein-protein interaction networks derived from module hub genes revealed several addiction-related genes as highly connected nodes such as CACNA1C, NR3C1, and JUN. In BA9, we observed a trend toward epigenetic age acceleration in individuals with CUD remaining stable even after adjustment for covariates. Results from our study highlight that CUD is associated with epigenome-wide differences in DNA methylation levels in BA9 particularly related to synaptic signaling and neuroplasticity. This supports findings from previous studies that report on the strong impact of cocaine on neurocircuits in the human prefrontal cortex. Further studies are needed to follow up on the role of epigenetic alterations in CUD focusing on the integration of epigenetic signatures with transcriptomic and proteomic data.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
Funding was provided by the German Federal Ministry of Education and Research (BMBF) through the e:Med research program ″A systems-medicine approach towards distinct and shared resilience and pathological mechanisms of substance use disorders″ (01ZX01909 to Rainer Spanagel, Marcella Rietschel, Stephanie H Witt, Anita C Hansson). Further, by ″Towards Targeted Oxytocin Treatment in Alcohol Addiction (Target-OXY)″ (031L0190A to Jerome C Foo), the ERA-NET program: Psi-Alc (FKZ: 01EW1908), the Hetzler Foundation for Addiction Research (to Anita C Hansson), and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Project-ID 402170461 - TRR 265 [65] to Rainer Spanagel, Anita C Hansson and Marcella Rietschel.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Postmortem brain tissue sampling at the Douglas Bell Canada Brain Bank was performed according to their established ethical standards including written informed consent from the next-of-kin for each subject. Our study design was approved by the Ethics Committee II of the University of Heidelberg, Medical Faculty Mannheim, Germany, under the register number 2021-681.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.