Bayesian network enables interpretable and state-of-the-art prediction of immunotherapy responses in cancer patients
Hideki Hozumi, View ORCID ProfileHideyuki Shimizu
doi: https://doi.org/10.1101/2022.11.02.22281835
Hideki Hozumi
1Keio University School of Medicine, Tokyo 160-8582, Japan
Hideyuki Shimizu
2Department of AI Systems Medicine, M&D Data Science Center, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
Posted November 04, 2022.
Bayesian network enables interpretable and state-of-the-art prediction of immunotherapy responses in cancer patients
Hideki Hozumi, Hideyuki Shimizu
medRxiv 2022.11.02.22281835; doi: https://doi.org/10.1101/2022.11.02.22281835
Subject Area
Subject Areas
- Addiction Medicine (405)
- Allergy and Immunology (718)
- Anesthesia (210)
- Cardiovascular Medicine (2997)
- Dermatology (256)
- Emergency Medicine (448)
- Epidemiology (12894)
- Forensic Medicine (12)
- Gastroenterology (840)
- Genetic and Genomic Medicine (4692)
- Geriatric Medicine (432)
- Health Economics (740)
- Health Informatics (2982)
- Health Policy (1081)
- Hematology (398)
- HIV/AIDS (942)
- Medical Education (439)
- Medical Ethics (116)
- Nephrology (481)
- Neurology (4482)
- Nursing (239)
- Nutrition (656)
- Oncology (2327)
- Ophthalmology (659)
- Orthopedics (262)
- Otolaryngology (330)
- Pain Medicine (289)
- Palliative Medicine (85)
- Pathology (506)
- Pediatrics (1217)
- Primary Care Research (509)
- Public and Global Health (7069)
- Radiology and Imaging (1570)
- Respiratory Medicine (932)
- Rheumatology (454)
- Sports Medicine (390)
- Surgery (496)
- Toxicology (62)
- Transplantation (214)
- Urology (186)