ABSTRACT
A pandemic of respiratory illnesses from a novel coronavirus known as Sars-CoV-2 has swept across the globe since December of 2019. This is calling upon the research community including medical imaging to provide effective tools for use in combating this virus. Research in biomedical imaging of viral patients is already very active with machine learning models being created for diagnosing Sars-CoV-2 infections in patients using CT scans and chest x-rays. We aim to build upon this research. Here we used a transfer-learning approach to develop models capable of diagnosing COVID19 from chest x-ray. For this work we compiled a dataset of 112120 negative images from the Chest X-Ray 14 and 2725 positive images from public repositories. We tested multiple models, including logistic regression and random forest and XGBoost with and without principal components analysis, using five-fold cross-validation to evaluate recall, precision, and f1-score. These models were compared to a pre-trained deep-learning model for evaluating chest x-rays called COVID-Net. Our best model was XGBoost with principal components with a recall, precision, and f1-score of 0.692, 0.960, 0.804 respectively. This model greatly outperformed COVID-Net which scored 0.987, 0.025, 0.048. This model, with its high precision and reasonable sensitivity, would be most useful as “rule-in” test for COVID19. Though it outperforms some chemical assays in sensitivity, this model should be studied in patients who would not ordinarily receive a chest x-ray before being used for screening.
CCS CONCEPTS
Life and Medical Sciences • Machine Learning • Artificial Intelligence
Reference format Jonathan Stubblefield, Jason Causey, Dakota Dale, Jake Qualls, Emily Bellis, Jennifer Fowler, Karl Walker and Xiuzhen Huang. 2022. COVID19 Diagnosis Using Chest X-Rays and Transfer Learning.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This research work was partially supported by the National Science Foundation EPSCOR DART grant, and the National Science Foundation with grant number 1452211, 1553680, and 1723529, National Institute of Health grant R01LM012601, as well as was partially supported by National Institute of Health grant from the National Institute of General Medical Sciences (P20GM103429).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.