Abstract
Population-level immunity to SARS-CoV-2 directly impacts the incidence of COVID-19 morbidity and mortality. Understanding how this immunity is likely to change over time in the context of future vaccination schedules and emerging SARS-CoV-2 variants is critical to inform pandemic policy. This study simulates population-level COVID-19 immunity (including relative contributions of vaccination and previous infection) in Victoria, Australia over 18 months using an agent-based model and logistic regression equations that predict immunity and waning following vaccination and/or infection. Previous infection was found to drive most immunity against infection even with ongoing regular vaccination, however a greater proportion of overall immunity against mortality was accounted for by vaccination. Although previous infection appears to be driving a substantial component of population-level COVID-19 immunity currently, improved vaccines providing longer lasting (and better sterilizing) immunity are likely to be a critical component of the future pandemic response given the risks associated with SARS-CoV-2 infection.
Competing Interest Statement
The Population Interventions Unit will likely soon receive funding from Moderna to carry out vaccine effectiveness studies in Victoria, Australia. Moderna had no role in the current study.
Funding Statement
Funding: an anonymous philanthropic donation and strategic University of Melbourne funding.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
Requests for additional model output data may be granted upon reasonable request to the researchers. Access to model code is generally not available but negotiated access may be possible. Please contact the researchers for further information.