Abstract
Each novel SARS-CoV-2 variant renews concerns about decreased vaccine efficacy caused by evasion of vaccine induced neutralizing antibodies. However, accumulating epidemiological data show that while vaccine prevention of infection varies, protection from severe disease and death remains high. Thus, immune responses beyond neutralization could contribute to vaccine efficacy. Polyclonal antibodies function through their Fab domains that neutralize virus directly, and Fc domains that induce non-neutralizing host responses via engagement of Fc receptors on immune cells. To understand how vaccine induced neutralizing and non-neutralizing activities synergize to promote protection, we leverage sera from 51 SARS-CoV-2 uninfected health-care workers after two doses of the BNT162b2 mRNA vaccine. We show that BNT162b2 elicits antibodies that neutralize clinical isolates of wildtype and five variants of SARS-CoV-2, including Omicron BA.2, and, critically, induce Fc effector functions. FcγRIIIa/CD16 activity is linked to neutralizing activity and associated with post-translational afucosylation and sialylation of vaccine specific antibodies. Further, neutralizing and non-neutralizing functions diminish with age, with limited polyfunctional breadth, magnitude and coordination observed in those ≥65 years old compared to <65. Thus, studying Fc functions in addition to Fab mediated neutralization provides greater insight into vaccine efficacy for vulnerable populations such as the elderly against SARS-CoV-2 and novel variants.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study was funded by a grant from the M. J. Murdock Charitable Trust (to MEC), an unrestricted grant from the OHSU Foundation (to MEC), the NIH training grant T32HL083808 (to TAB), NIH grant R011R01AI141549-01A1 (to FGT), OHSU Innovative IDEA grant 1018784 (to FGT), NIH grant R01AI145835 (to WBM), Burroughs Wellcome Fund UT Southwestern Training Resident Doctors as Innovators in Science (to YJK), pilot project grant from the UT Southwestern Department of Internal Medicine and Disease Oriented Scholars Award (to LLL).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The Institutional Review Board of Oregon Health & Science University gave ethical approval for this work (IRB#00022511)
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
The dataset generated during this study is available upon reasonable request. This paper does not report original code. Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.