Abstract
Patient representation learning methods create rich representations of complex data and have potential to further advance the development of computational phenotypes (CP). Currently, these methods are either applied to small predefined concept sets or all available patient data, limiting the potential for novel discovery and reducing the explainability of the resulting representations. We report on an extensive, data-driven characterization of the utility of patient representation learning methods for the purpose of CP development or automatization. We conducted ablation studies to examine the impact of patient representations, built using data from different combinations of data types and sampling windows on rare disease classification. We demonstrated that the data type and sampling window directly impact classification and clustering performance, and these results differ by rare disease group. Our results, although preliminary, exemplify the importance of and need for data-driven characterization in patient representation-based CP development pipelines.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported by the National Library of Medicine (T15LM009451).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Use of these data was approved by the Colorado Multiple Institutional Review Board (15-0445).
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.