Abstract
Light is the primary stimulus for synchronizing the circadian clock in humans. There are very large interindividual differences in the sensitivity of the circadian clock to light. Little is currently known about the genetic basis for these interindividual differences. We performed a genome-wide gene-by-environment interaction study (GWIS) in 280,897 individuals from the UK Biobank cohort to identify genetic variants that moderate the effect of daytime light exposure on chronotype (individual time of day preference), acting as ‘light sensitivity’ variants for the impact of daylight on the circadian system. We identified a genome-wide significant SNP mapped to the ARL14EP gene (rs3847634; p < 5×10−8), where additional minor alleles were found to enhance the morningness effect of daytime light exposure (βGxE = -.03, SE = 0.005) and were associated with increased gene ARL14EP expression in brain and retinal tissues. Gene-property analysis showed light sensitivity loci were enriched for genes in the G protein-coupled glutamate receptor signaling pathway and in Per2+ hypothalamic neurons. Linkage disequilibrium score regression identified significant genetic correlations of the light sensitivity GWIS with chronotype and sleep duration, such that greater light sensitivity was associated with later chronotype, greater insomnia symptoms and shorter sleep duration. Greater light sensitivity was also genetically correlated with greater risk for PTSD. This study is the first to assess light as an important exposure in the genomics of chronotype and is a critical first step in uncovering the genetic architecture of human circadian light sensitivity and its links to sleep and mental health.
Competing Interest Statement
AJKP and SWC have received research funding from Delos and Versalux, and they are co-founders and co-directors of Circadian Health Innovations PTY LTD. SWC has also received research funding from Beacon Lighting and has consulted for Dyson.
Funding Statement
This research and Angus C. Burns was supported by a Research Training Program (RTP) scholarship from the Australian Government.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This work utilized the UK Biobank resource (application 26209; Martin Rutter).
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
All data produced in the present study are available upon reasonable request to the authors