Abstract
We analyze an ensemble of n-sub-epidemic modeling for forecasting the trajectory of epidemics and pandemics. These ensemble modeling approaches, and models that integrate sub-epidemics to capture complex temporal dynamics, have demonstrated powerful forecasting capability. This modeling framework can characterize complex epidemic patterns, including plateaus, epidemic resurgences, and epidemic waves characterized by multiple peaks of different sizes. We systematically assess their calibration and short-term forecasting performance in short-term forecasts for the COVID-19 pandemic in the USA from late April 2020 to late February 2022. We compare their performance with two commonly used statistical ARIMA models. The best fit sub-epidemic model and three ensemble models constructed using the top-ranking sub-epidemic models consistently outperformed the ARIMA models in terms of the weighted interval score (WIS) and the coverage of the 95% prediction interval across the 10-, 20-, and 30-day short-term forecasts. In the 30-day forecasts, the average WIS ranged from 377.6 to 421.3 for the sub-epidemic models, whereas it ranged from 439.29 to 767.05 for the ARIMA models. Across 98 short-term forecasts, the ensemble model incorporating the top four ranking sub-epidemic models (Ensemble(4)) outperformed the (log) ARIMA model 66.3% of the time, and the ARIMA model 69.4% of the time in 30-day ahead forecasts in terms of the WIS. Ensemble(4) consistently yielded the best performance in terms of the metrics that account for the uncertainty of the predictions. This framework could be readily applied to investigate the spread of epidemics and pandemics beyond COVID-19, as well as other dynamic growth processes found in nature and society that would benefit from short-term predictions.
Summary The COVID-19 pandemic has highlighted the urgent need to develop reliable tools to forecast the trajectory of epidemics and pandemics in near real-time. We describe and apply an ensemble n-sub-epidemic modeling framework for forecasting the trajectory of epidemics and pandemics. We systematically assess its calibration and short-term forecasting performance in weekly 10-30 days ahead forecasts for the COVID-19 pandemic in the USA from late April 2020 to late February 2022 and compare its performance with two different statistical ARIMA models. This framework demonstrated reliable forecasting performance and substantially outcompeted the ARIMA models. The forecasting performance was consistently best for the ensemble sub-epidemic models incorporating a higher number of top-ranking sub-epidemic models. The ensemble model incorporating the top four ranking sub-epidemic models consistently yielded the best performance, particularly in terms of the coverage rate of the 95% prediction interval and the weighted interval score. This framework can be applied to forecast other growth processes found in nature and society including the spread of information through social media.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
G.C. is partially supported from NSF grants 1610429 and 1633381 and R01 GM 130900. A.T. and S.D. are supported by a 2CI fellowship from Georgia State University.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
All data referred to in this manuscript are available in our GitHub repository at https://github.com/atariq2891/An-ensemble-n-sub-epidemic-modeling-framework-for-short-term-forecasting-epidemic-trajectories