Abstract
Background Much of the world’s population has been infected with SARS-CoV-2. Thus, infection-induced immunity will play a critical role in future SARS-CoV-2 transmission. We investigated the impact of immunity from prior infection on viral shedding duration and viral load.
Methods We conducted a household cohort study in Managua, Nicaragua with an embedded transmission study that closely monitors participants regardless of symptom status. Real-time reverse-transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assays (ELISAs) were used to measure infections and seropositivity, respectively. Blood samples were collected in Feb/March and Oct/Nov 2020 and 2021, and surrounding household intensive monitoring periods. We used accelerated failure time models to compare shedding times. Participants vaccinated ≥14 days prior to infection were excluded from primary analyses.
Results There were 600 RT-PCR-confirmed SARS-CoV-2 infections between May 1, 2020 and March 10, 2022 with ELISA data prior to infection. Prior infection was associated with 48% shorter shedding times, event time ratio (ETR) 0.52 (95% CI: 0.39-0.69, mean shedding: 13.7 vs 26.4 days). A 4-fold higher anti-SARS-CoV-2 spike titer was associated with 17% shorter shedding (ETR 0.83, 95% CI: 0.78-0.90). Similarly, maximum viral loads (lowest CT) were lower for previously infected individuals (mean CT 29.8 vs 28.0, p = 4.02×10−3). Shedding was shorter in previously infected adults and children ≥10 years, but not in children 0-9 years; there was little difference in CT levels for previously infected vs naïve adults above age 60.
Conclusions Prior infection-induced immunity was associated with shorter viral shedding and lower viral loads.
Competing Interest Statement
Aubree Gordon serves on an advisory board for Janssen. All other authors report no competing interests.
Funding Statement
Funding: This work was supported by the National Institute for Allergy and Infectious Diseases at the National Institute of Health [award no. R01 AI120997 to A.G., and contract nos. HHSN272201400006C and 75N93021C00016 to A.G.], and a grant from Open Philanthropy.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Not Applicable
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This study was approved by the institutional review boards at the Nicaraguan Ministry of Health and the University of Michigan (HUM00119145 and HUM00178355). Informed consent or parental permission was obtained for all participants. Assent was obtained from children aged ?6 years.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Not Applicable
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Not Applicable
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Not Applicable
Data Availability
DATA AND CODE AVAILABILITY Individual-level data may be shared with outside investigators following University of Michigan IRB approval. R code is available on GitHub (https://github.com/hannahma/SARS-CoV-2_shedding). Please contact Aubree Gordon (gordonal{at}umich.edu) to arrange for data access.