Abstract
Introduction Since the start of the pandemic SARS-CoV-2 infection has most commonly been confirmed using reverse transcriptase polymerase chain reaction (RT-PCR), with results translated into a binary positive/negative outcomes. Previous studies have found that there is additional useful information in the level of the Cycle threshold (Ct value) of positive cases. Here we characterise variation in Ct values as a proxy for viral loads in more than 3 million test-positive COVID-19 cases in England with the aim of better quantifying the utility of such data.
Methods We used individual N gene Ct values from symptomatic PCR positive (with Ct value less than 30) Pillar 2 cases in England who self-reported the date of symptom onset, and for whom age, reinfection status, variant status, and the number of vaccines received was available. Those with a positive test result more than 6 days after their reported symptom onset were excluded to mitigate the potential impact of recall bias. We used a generalised additive model, to estimate Ct values empirical mean Ct values for each strata of interest independently as well as to predict Ct values using a model that adjusted for a range of demographic and epidemiological covariates jointly. We present empirical Ct values and compare them to predicted mean Ct values.
Results We found that mean Ct values varied by vaccine status, and reinfection status with the number of vaccine doses having little apparent effect. Modelling Ct values as a smooth function of time since onset and other variables struggled to reproduce the individual variation in the data but did match the population-level variation over time relatively well with this being apparently dominated by large differences between variants. Other variation over time was also captured to some degree though their remained several periods where the model could not capture the empirical means with a potential explanation being epidemic phase bias.
Conclusions Analysing a large dataset of routine Ct values from symptomatic COVID-19 cases in England we found variation based on time since symptom onset, vaccine status, age, and variant. Ct values were highest 1-3 days after symptom onset and differed most due to variant status. We found no clear correlation between previously estimated differences in intrinsic transmissibility and Ct values indicating that this is potentially mediated at least partly by factors other than viral load as estimated using Ct values. We found evidence that a model adjusting for a range of covariates could explain some of the population-level variation over time but systematically underestimated Ct values when incidence was increasing, and overestimated them when incidence was decreasing. This indicates the utility of Ct values from this data source as a tool for surveillance, potentially avoiding some of the biases of aggregated positive counts.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported by the Wellcome Trust via a Senior Research Fellowship to Sebastian Funk (210758/Z/18/Z).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Ethics committee of the London School of Hygiene & Tropical Medicine gave ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
The Pillar 2 surveillance data used in this repository is currently not publicly available. Access has been provided by the UK Health Security Agency (UKHSA) through the Scientific Pandemic Influenza Group on Modelling, Operational sub-group (SPI-M-O) for the Scientific Advisory Group for Emergencies (SAGE), where this work was first presented.