ABSTRACT
Objective Term congenital heart disease (CHD) neonates display abnormalities of brain structure and maturation, which are possibly related to underlying patient factors and perioperative insults. Our primary goal was to delineate associations between clinical factors and postnatal brain microstructure in term CHD neonates using diffusion tensor imaging (DTI) magnetic resonance (MR) acquisition combined with complementary data-driven connectome and seed-based tractography quantitative analysis. Our secondary goal was to delineate associations between mild dysplastic structural abnormalities and connectome and seed-base tractography as our primary goal.
Methods Neonates undergoing cardiac surgery for CHD were prospectively recruited from two large centers. Both pre- and postoperative magnetic resonance (MR) brain scans were obtained. DTI in 42 directions was segmented to 90 regions using neonatal brain template and three weighted methods. Seed-based tractography was performed in parallel. Clinical data :18 patient-specific and 9 preoperative variables associated with preoperative scan and 6 intraoperative and 12 postoperative variables associated with postoperative scan. A composite Brain Dysplasia Score (BDS) was created including cerebellar, olfactory bulbs, and hippocampus abnormalities. The outcomes included (1) connectome metrics: cost and global/nodal efficiency (2) seed-based tractography: fractional anisotropy. Statistics: multiple regression with false discovery rate correction (FDR).
Results A total of 133 term neonates with complex CHD were prospectively enrolled and 110 had analyzable DTI. Multiple patient-specific factors including d-transposition of the great arteries physiology and severity of impairment of fetal cerebral substrate delivery were predictive of preoperative reduced cost (p<0.0073), reduced global/nodal efficiency (p <0.03). Multiple postoperative factors (extracorporeal membrane oxygenation [ECMO], seizures, cardiopulmonary resuscitation) were predictive of postoperative reduced cost, reduced global/nodal efficiency (p < 0.05). All three subcortical structures of the BDS (including olfactory bulb/sulcus, cerebellum, and hippocampus) predicted distinct patterns of altered nodal efficiency (p<0.05).
Conclusion Patient-specific and postoperative clinical factors were most predictive of diffuse postnatal microstructural dysmaturation in term CHD neonates. In contrast, subcortical components of a structurally based-brain dysplasia score, predicted more regional based postnatal microstructural differences. Collectively, these findings suggest that brain DTI connectome may facilitate deciphering the mechanistic relative contribution of clinical and genetic risk factors related to poor neurodevelopmental outcomes in CHD.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported by the Department of Defense (W81XWH-16-1-0613), 57 the National Heart, Lung and Blood Institute (R01 HL152740-1, R01 HL128818-05), and the 58 National Heart, Lung and Blood Institute with National Institute on Aging (R01HL128818-05 59 S1). Southern California Clinical and Translational Sciences Institute (NCATS) through Grant 60 UL1TR0001855. Its contents are solely the responsibility of the authors and do not 61 necessarily represent the official views of the NIH. We also acknowledge Additional Ventures 62 for support (AP, VR, RC) VR is supported by the Saban Research Institute, Additional 63 Ventures Foundation and NIH-NHLBI K01HL153942.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
University of Pittsburgh Institutional Review Board of The University of Pittsburgh gave ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
Funding: This work was supported by the Department of Defense (W81XWH-16-1-0613), the National Heart, Lung and Blood Institute (R01 HL152740-1, R01 HL128818-05), and the National Heart, Lung and Blood Institute with National Institute on Aging (R01HL128818-05 S1). Southern California Clinical and Translational Sciences Institute (NCATS) through Grant UL1TR0001855. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH. We also acknowledge Additional Ventures for support (AP, VR, RC) VR is supported by the Saban Research Institute, Additional Ventures Foundation and NIH-NHLBI K01HL153942.
Data Availability
All data produced in the present study are available upon reasonable request to the authors