Decision trees for COVID-19 prognosis learned from patient data: Desaturating the ER with Artificial Intelligence
View ORCID ProfileNikolas Bernaola, Guillermo de Lima, Miguel Riaño, Lucia Llanos, Sarah Heili-Frades, Olga Sanchez, Antonio Lara, Guillermo Plaza, Cesar Carballo, Paloma Gallego, Pedro Larrañaga, Concha Bielza
doi: https://doi.org/10.1101/2022.05.09.22274832
Nikolas Bernaola
1Computational Intelligence Group. Departamento de Inteligencia Artificial. Universidad Politécnica de Madrid, Spain
Guillermo de Lima
1Computational Intelligence Group. Departamento de Inteligencia Artificial. Universidad Politécnica de Madrid, Spain
Miguel Riaño
1Computational Intelligence Group. Departamento de Inteligencia Artificial. Universidad Politécnica de Madrid, Spain
Lucia Llanos
2Clinical Research Unit, Fundacion Jimenez Diaz University Hospital, IIS-Fundación Jiménez Díaz
Sarah Heili-Frades
2*Intermediate Respiratory Care Unit, IIS-Fundación Jiménez Díaz Quirón Salud, Madrid, CIBERES, REVA Network
Olga Sanchez
2Clinical Research Unit, Fundacion Jimenez Diaz University Hospital, IIS-Fundación Jiménez Díaz
Antonio Lara
3Hospital Universitario Sanitas - La Zarzuela
Guillermo Plaza
3Hospital Universitario Sanitas - La Zarzuela
Cesar Carballo
4Hospital Universitario Ramón y Cajal
Paloma Gallego
4Hospital Universitario Ramón y Cajal
Pedro Larrañaga
1Computational Intelligence Group. Departamento de Inteligencia Artificial. Universidad Politécnica de Madrid, Spain
Concha Bielza
1Computational Intelligence Group. Departamento de Inteligencia Artificial. Universidad Politécnica de Madrid, Spain
Article usage
Posted May 10, 2022.
Decision trees for COVID-19 prognosis learned from patient data: Desaturating the ER with Artificial Intelligence
Nikolas Bernaola, Guillermo de Lima, Miguel Riaño, Lucia Llanos, Sarah Heili-Frades, Olga Sanchez, Antonio Lara, Guillermo Plaza, Cesar Carballo, Paloma Gallego, Pedro Larrañaga, Concha Bielza
medRxiv 2022.05.09.22274832; doi: https://doi.org/10.1101/2022.05.09.22274832
Decision trees for COVID-19 prognosis learned from patient data: Desaturating the ER with Artificial Intelligence
Nikolas Bernaola, Guillermo de Lima, Miguel Riaño, Lucia Llanos, Sarah Heili-Frades, Olga Sanchez, Antonio Lara, Guillermo Plaza, Cesar Carballo, Paloma Gallego, Pedro Larrañaga, Concha Bielza
medRxiv 2022.05.09.22274832; doi: https://doi.org/10.1101/2022.05.09.22274832
Subject Area
Subject Areas
- Addiction Medicine (405)
- Allergy and Immunology (715)
- Anesthesia (210)
- Cardiovascular Medicine (2990)
- Dermatology (254)
- Emergency Medicine (447)
- Epidemiology (12875)
- Forensic Medicine (12)
- Gastroenterology (840)
- Genetic and Genomic Medicine (4671)
- Geriatric Medicine (428)
- Health Economics (736)
- Health Informatics (2971)
- Health Policy (1079)
- Hematology (395)
- HIV/AIDS (942)
- Medical Education (434)
- Medical Ethics (116)
- Nephrology (479)
- Neurology (4452)
- Nursing (239)
- Nutrition (654)
- Oncology (2317)
- Ophthalmology (659)
- Orthopedics (261)
- Otolaryngology (330)
- Pain Medicine (288)
- Palliative Medicine (85)
- Pathology (505)
- Pediatrics (1208)
- Primary Care Research (506)
- Public and Global Health (7052)
- Radiology and Imaging (1565)
- Respiratory Medicine (927)
- Rheumatology (447)
- Sports Medicine (389)
- Surgery (495)
- Toxicology (60)
- Transplantation (214)
- Urology (186)