Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic hit almost all cities in Brazil in early 2020 and lasted for several months. Despite the effort of local state and municipal governments, an inhomogeneous nationwide response resulted in a death toll amongst the highest recorded globally. To evaluate the impact of the nonpharmaceutical governmental interventions applied by different cities – such as the closure of schools and business in general – in the evolution and epidemic spread of SARS-CoV-2, we constructed a full-sized agent-based epidemiological model adjusted to the singularities of particular cities. The model incorporates detailed demographic information, mobility networks segregated by economic segments, and restricting bills enacted during the pandemic period. As a case study, we analyzed the early response of the City of Natal – a midsized state capital – to the pandemic. Although our results indicate that the governmental response could be improved, the restrictive mobility acts saved many lives. The simulations show that a detailed analysis of alternative scenarios can inform policymakers about the most relevant measures for similar pandemic surges and help developing future response protocols.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
PHL, LW, CRC, RCM, LMMV, RKRS, PSS, RCM and PAV received funding from Heriott- Watt University (832228-Singularity/COVID-19 Round 2019-20 GCRF-SFC). This research was supported by the High Performance Computing Center at UFRN (NPAD/UFRN)
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Not Applicable
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The research does not require ethical approval
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Not Applicable
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Not Applicable
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Not Applicable
Footnotes
↵‡ Contact at cesar{at}imd.ufrn.br or p.a.vargas{at}hw.ac.uk
Data Availability
Model software is available at: https://github.com/Sly143/NatalCovid/