Abstract
Background Pathophysiology of venous thrombo-embolism (VTE) depends upon several acquired, inherited and environmental risk factors, including high altitude (HA) exposure. The present study aims to gain insights into pathophysiological mechanism(s) of high altitude induced VTE (HA-VTE) by studying global methylation signatures.
Methodology Blood samples were collected from Indian Army volunteers divided into four study groups; sea level control (SLC), sea level VTE patients (SL-VTE), high altitude control (HAC) and high altitude VTE patients (HA-VTE). Methylation patterns were studied using whole genome bisulfate sequencing. Differentially methylated genes and pathways were identified by comparing percentage methylation.
Results Highest DM was observed in SL-VTE (1162 gene) compared to SLC where in hyper methylation was predominant (62.9%) compared to hypo methylation (37.05%). A reverse trend was observed in HA-VTE, where hypo methylation (61.69%) was predominant over hyper methylation (38.30%) in a total of 296 DM genes. Differential hypomethylation of genes involved in cell adhesion/platelet activity (CADM1, PTPRK, PDGFA) and immune response (CXCL12, IL4, IRF4, NLRP1) was observed in HA-VTE whereas genes encoding transcription factors (GSC, RPSKA1), trans membrane receptor (NOTCH2) and growth factor (TGFB2) were hypermethylated in comparison to SL-VTE. Methylation pattern of HA-VTE compared to HAC showed hypomethylation in genes involved in oxidative phosphorylation (CPOX), immune response and stress response (NDRG1), while those involved in signaling mechanisms (KALRN), neurotransmitter release (TMPRSS2) and transcription factor (ELF1) were hyper-methylated.
Conclusions Our study for the first time reveals genome wide methylation pattern in HA-VTE group where in differential hypo methylation in cell adhesion and inflammation genes was observed.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This research was funded by Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development organization (DRDO) (Project: DIP-263).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The present study involved Human volunteers and was conducted in accordance with the ethical guidelines of Indian council of Medical Research (ICMR) after approval from institutional (DIPAS) human ethical committee
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
All data produced in the present work are contained in the manuscript