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Abstract

Background: Pathophysiology of venous thrombo-embolism (VTE) depends upon
several acquired, inherited and environmental risk factors, including high altitude
(HA) exposure. The present study aims to gain insights into pathophysiological
mechanism(s) of high atitude induced VTE (HA-VTE) by studying global
methylation signatures.

Methodology: Blood samples were collected from Indian Army volunteers divided
into four study groups; sea level control (SLC), sealevel VTE patients (SL-VTE),
high altitude control (HAC) and high altitude VTE patients (HA-VTE).
Methylation patterns were studied using whole genome bisulfate sequencing.
Differentially methylated genes and pathways were identified by comparing
percentage methylation.

Results. Highest DM was observed in SL-VTE (1162 gene) compared to SLC
where in hyper methylation was predominant (62.9%) compared to hypo
methylation (37.05%). A reverse trend was observed in HA-VTE, where hypo
methylation (61.69%) was predominant over hyper methylation (38.30%) in atotal
of 296 DM genes. Differential hypomethylation of genes involved in cdl
adhesion/platelet activity (CADM1, PTPRK, PDGFA) and immune response
(CXCL12, IL4, IRF4, NLRP1) was observed in HA-V TE whereas genes encoding
transcription factors (GSC, RPSKAL), trans membrane receptor (NOTCH2) and
growth factor (TGFB2) were hypermethylated in comparison to SL-VTE.
Methylation pattern of HA-VTE compared to HAC showed hypomethylation in
genes involved in oxidative phosphorylation (CPOX), immune response and stress
response (NDRG1), while those involved in signaling mechanisms (KALRN),
neurotransmitter release (TMPRSS2) and transcription factor (ELF1) were hyper-
methylated.

Conclusions: Our study for the first time reveals genome wide methylation pattern
in HA-VTE group where in differential hypo methylation in cell adhesion and
inflammation genes was observed.
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I ntroduction

Thrombo-Embolic Disorders (TED) comprising of both venous and arterial
thrombosis together results in significant morbidity and mortality every year
worldwide. Thrombosis is the third most common underlying pathology of major
cardiovascular complications like ischemic heart disease and stroke, and remains a
major contributor to the global disease burden (Raskob et al., 2014).The etiology
of venous thrombo-embolism (VTE) is considered multi factorial, as the genetic
and acquired risk factors individually or together commence the thrombus
formation.VTE encompasses two clinically interrelated conditions; deep vein
thrombosis (DVT) and pulmonary embolism (PE), the later one being potentially
fatal. DVT most commonly starts in the leg, although it rarely also occurs in other
veins such a supper extremities, liver , cerebral sinus, retina and mesenteric. The
thrombus or blood clots might dislodge from the site of origin and travel through
blood to lodge itself into lungs, leading to PE. One in every three patient of VTE
manifests PE, together with DVT; while two in every three patient manifest only
DVT (White, 2003). Several independent studies have established the role of
genetic risk factors in VTE pathophysiology. These include, gene involved in
fibrinolytic pathway such as tissue-type plasminogen activator (t-PA) and
plasminogen activator inhibitor-1 (PAI-1) (Asselbergs et al.2007); deficiencies of
natural anticoagulants as well as elevated levels of certain coagulation factors such
as factor VIII and factor X1 (Ageno et al. 2008, Cushman et al. 2009, Ryland et
a.2012, Otaet al. 2011). Limited studies have been conducted on gene expression
changesin VTE under hypoxic conditions (Jha et al. 2018, Srivastava et a. 2020).

‘Hypoxia 'as encountered at high altitude (HA environment is associated to low
oxygen bio availability and decreased ambient pressure along with other
environmental stressors like cold, radiation and compromised physiological
conditions. Increasing evidence has demonstrated that environmental conditions
prevailing aa HA such as hypoxia, dehydration, heme concentration, use of
constrictive clothing and enforced stasis because of severe weather may result in
VTE event (Cancienne et al. 2017). Un-acclimatized rapid ascent to HA modulates
coagulation parameters and hemostatic profiles (Singh et al., 1972, Doughty et al.,
1994) and incidences of DVT and PE are reportedly higher in sojourns travelling
to HA and soldiers posted at HA without any other co-existent risk factor (Kumar
2006, Anand et al. 2001, Khalil et al.2010, Rathi et al. 2012).

Epigenetic modifications such as DNA methylation, histone modification and
small non-coding RNA regulate gene expression by altering chromatin structure
and accessibility, as well as interacting with DNA binding proteins on the
regulatory regions. Gene expression is thus affected on account of the hindrance
caused on the promoters/enhancers for the binding of transcriptional factors,
activators/repressors (Chamberlain et al., 2014). DNA methylation marks the
interface between genetic and environmental risk factors of complex human
diseases. Cells are programmed to respond towards environmental stimuli, one of
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which is hypoxia. Various evidences suggest that regulation of gene expression by
hypoxia has epigenetic bass, especially DNA methylation. It is a dynamic
epigenetic modification and crucial for regulating gene expression, genomic
imprinting and is the defensive mechanism against chromatin instability (Putiri et
al. 2011, Suzuki et al. 2008). Tumor hypoxia is suggested to be a novel regulator
of DNA methylation as tumour suppressor gene promoters in tissue from cancer
patients were found to be highly methylated in hypoxia (Thienpont et al., 2016).
Also, the data strongly suggest that up to half of hyper methylation events were
attributable to hypoxia (Thienpont et al., 2016). Hypoxia induced decrease in gene
transcription has epigenetic bass as reviewed by Perez-Perri and coworkers. They
further provided multiple compelling evidences to demonstrate chromatin changes
such as DNA methylation and histone modifications during HIF activation under
hypoxic conditions (Perez-Perri et al. 2011).

Systematic assessment and analysis of global methylation pattern an help in better
understanding of effect of changing environment in VTE pathophysiology.
Environmental and stress related challenge ssuch as life style habits, air pollutants
etc. alter another wise un-methylated chromosomal region and changes the DNA
methylation pattern (Baccarelli et al.,2009; Bollati et al., 2010; McGowan €t al.,
2009). Substantial evidence demonstrates that DNA methylation is associated to
hypoxia as well as cardiovascular diseases. Aberrant promoter hyper methylation
is documented in atherosclerosis, coronary artery disease etc. (Friso et al.2012,
Yamada etal., 2018), however, the role of global DNA methylation in HA induced
coagulation aswell asin DVT is yet to be explored. DNA methylation marks were
found to be strongly associated with coagulation factor V Leiden (FVL) mutation
(Aiss et al.,2014).Moreover, DNA methylation patterns have been found by
global DNA methylation analysis of anti phosphor lipid syndrome patients,
suggesting its stronger link to thrombotic disorders (Kim etal.2012).

In summary, whether hypoxia has an underlying methylation mechanism to
modulate thrombotic propensity is yet to be elucidated. No direct evidence is
available on alteration of DNA methylation machinery during VTE event under
influence of hypoxia. Present study has been conducted on Human subjects in
order to understand the role of aberrant DNA methylation, regulating thrombotic
events during high altitude exposure. Our objective was to gain insights into global
DNA methylation status of patients of high altitude induced venous thrombo-
embolism in relation to patients at sealevel.

M ethodology

Sudy subjects

The present study involved Human volunteers and was conducted in accordance
with the ethical guidelines of Indian council of Medical Research after approval
from institutional human ethical committee. All volunteers recruited for the study
signed an informed consent for their participation. Venous thrombosis patients
were from Indian Army Soldiers and their samples were collected from the Army
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Research and Referral Hospital (R & R), Delhi, India (sealevel VTE patients) and
the Western Command Hospital, Chandi Mandir, Chandigarh (high altitude VTE
patients). Patients with history of pre-existing systemic disease, any prior surgery,
vasculitis and malignancy were excluded from our study. Also, clinical profile of
patients, time and site of venous thrombosis (VT) episode along with the presence
of predisposing factors (such as surgery, trauma, prolonged immobilization,
hypertension, diabetes, familial history of bleeding) were documented at the time
of sample collection. Diagnosis of VTE was confirmed for all patients by atleast
one of the radiological imaging methods such as colour Doppler/contrast-enhanced
computed tomography/computed tomography angiography/magnetic resonance
imaging. Samples from age and sex matched healthy Army soldiers posted at
Dehi and those deployed at high altitude region (Leh, Ladakh) were taken as
controls. The persons with history of any VTE incident were excluded from the
control group.

Case-Control Sudy: Subject groups and sample collection

A total of 18 study subjects were divided into four groups, high atitude VTE
patients (HA-VTEN=5), high altitude controls (HAC n=5), sea level VTE patients
(SL-VTE n=4) and sealevel controls (SLC n=4).

Sodium bisulfate sequencing was used for quantitative DNA methylation
measurements. Approximately 1 ml of blood from each volunteer was collected in
EDTA tube. Demographic data recording for each subject was also do neat the
time of sample collection.

DNA isolation and quantitation

Genomic DNA was isolated from peripheral blood using QlAamp DNA isolation
kit (Qiagen, Germany), according to manufacturer’s instructions. Quantitative
analysis of high molecular weight DNA was done using DNA/RNA nano drop
2000 spectrophotometer (Thermo fischer, USA). DNA was aso assessed
gualitatively on 0.7% agarose gel containing ethidium bromide.100 ng of DNA
was loaded in each well and run on 50V for 30 min and visualized under UV.

Library preparation and Bisulfite sequencing

For library preparation, DNA samples were fragmented and specialized adapters
were added to each end. These adapters contain complementary sequences that
allow the DNA fragments to bind to the flow cell (Illumina methylation Kkit).
Bisulfite conversion changed unmethylated cytosines to uracil during library
preparation. In bisulfite sequencing (BS-Seq), denatured DNA was subjected to
bisulfite treatment, which converted cytosine (C) residues to uracil (U), but lefts-
methyl cytosine residues unaffected .Converted bases were identified (after PCR)
as thymine

(T) in the sequencing data. These DNA fragments were then amplified and
purified. The DNA library was loaded onto the flow cell and placed on a
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sequencer (service obtained from M/s Sandor Life sciences Pvt. Ltd.).

Sequencing and alignment

Bisulfite conversion of genomic DNA followed by next generation sequencing
(BS-seq) is most widely accepted technique for measuring methylation state of
whole genome at single base resolution. Paired end sequencing (150nt) was done
using Illlumina HiSeq platform. All 150 base pair, paired end reads were quality
checked for low quality bases and adapter sequences. After processing of raw
reads, quality check was done using Perl scripts. Because of C to T conversion,
bisulfite sequence reads are not complementary to the reference genome and thus
the processing of sequencing datais very challenging. Thus special alignment tool,
Bismark was used for alignment of reads to reference genome. This tool
completed the process in three steps;

(i) Genome preparation, (ii) Alignment and (iii) Methylation extractor. Bismark
performed alignments of bisulfate treated reads to reference genome and cytosine
methylation calling smultaneously. Mapping of bisulfate treated reads was done
using short read aligner Bowtie 2. Sequence reads were first transformed into fully
bisulfite-converted forward (C->T) and reverse (G->A) reads, before they were
aligned to similarly converted versions of the genome (also C->T and G->A converted).
Sequence reads that produced a unique best alignment from the four alignment processes
against the bisulfite genomes were then compared to the normal genomic sequence and
the methylation state of all cytosine positions in the read are inferred. A read was
considered to be aligned uniquely if an alignment had a unique best alignment score. If a
read produced several alignments with the same number of mismatches or with the same
alignment score, then it was discarded altogether.

Methylation analysis

Data obtained from methylation calling was used to calculate differentia
methylation (DM). Fisher's exact test was used to calculate p-vaues.
Differentially methylated regions/bases were then subjected to gene annotation
using genomation package. In this package, the gene annotation from a BED file
was read and annotated differentially methylated regions with that information
using genomation functions. This detailed the exact percentage of differentially
methylated regions on promoters/introns/exons/intergenic region. This was
followed by comparative group analysis of hyper-methylated and hypo-mehylated
regions amongst HA-VTE and SL-V TE patients with respective controls followed
by pathway analysis and gene enrichment analysis.

The complete study work flow has been depicted in figurel.

Results
DNA methylation featuresand Genomic featuresof DMR and DM S

Mapping efficiency of paired end reads was in between 78-80%. We studied DNA
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methylation widely in CpG (5'—Cytosine—phosphate—Guanine—3') context as
more than 80% of methylation events occurred at CpG sites. Methylation in CHG
and CHH (where H correspond to A, T or C) context was only in between 0.1-
0.2%. DM was studied in both differentially methylated regions (DMR) and
differentially methylated sites (DMS). Percentage of methylation across different
samples were observed based on those occurring in CpG islands, CpG shores, CpG
shelves, transcription factor binding sites (TFBS) and in DNasel hypersensitive
sites (as detailed in figure 2a and 2b).Largest fraction of DMR and DMS was
observed in DNase | hypersensitive sites (~0.5 in DMR and 0.13-0.2 in DMYS).
TFBS has the next highest methylation proportion (0.3-0.4 in DMR and 0.07-0.09
in DMS). We observed a very small fraction of methylationin CpG shelves and
CpG shores and least in CpG islands.

Regarding the genomic distribution of DMR and DMS, the percentage of
methylation was studied in promoter regions, 3'end, exonic region and intronic
region of gene and those occurring in intergenic region. We observed that 80-90%
of methylation changes occurred in intergenic and intronic regions of the genes. A
very small proportion of total differentially methylated regiong/sites belonged to
Exonic, 3'-region and promoter region of the genes (figure 2c and 2d).

I dentification of differentially methylated genes

Four types of comparative analysis was done amongst the different study groups,
(i) HA-VTE vs SL-VTE; (ii) SL-VTE vs SLC; (iii) HACvs SLC; (iv) HA-VTE vs
HAC. Criteriafor DM were>

+25% for hyper methylation score and < 25% for hypo methylation score. Highest
number of CpG regions and CpG sites were observed in SL-VTE in comparison to
SLC (figure 2¢). SL-VTE vs SLC had highest number of hyper methylated and
hypo methylated genes, wherein the component of hypermethylation was more
(n=731) compared hypomethylation (n=431). In contrast, VTE patients at high
altitude showed higher component of hypo methylation (n=183 genes) compared
to hyper methylation (n=113 genes) in comparison to SL-VTE group. In case of
HA exposed healthy controls (HAC) in comparison to SLC, number of hypo
methylated genes were more(n=312) than hyper methylated genes (n=216). Least
number of genes showed DM when HA-VTE were compared to HAC, only 78
genes showed hyper methylation whereas, 42 genes were hypo methylated
(figure2f).A very small percentage of the methylation changes were observed in
promoter region of genes. The distribution of DM in different genomics regionsis
illustrated in figure 3(a) and 3(b) using https://scatterplot.online/.

Comparison of hypo-methylated and hyper-methylated genes across different
study groups and Pathway analysis

Hypo methylated and hyper methylated genes from each comparison were
compared with the help of Venn diagram  (Figuredaand3b)
(Heberleetal.2015,http://www.interactivenn.net/). Maximum number of common
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differentially methylated genes was seen in SL-VTE vs SLC and HAC vs SLC (82
common hypo methylated genes and 80 common hyper methylated genes). These
genes are detailed in figure 4c and 4d. Most of the genes common in other
comparisons were either un-characterized or non protein coding. Protein coding
differentially methylated genes for high atitude patients (as obtained from two
comparisons, HA-VTE vs SL-VTE and HA-VTE vs HAC) and sea level patients
(as obtained from comparison (SL-VTE vs SLC) are depicted in Figure 4.

Pathway analysis was done using PANTHER pathways
(http://pantherdb.org/tools/index.jsp)  (Mietal.,2010) and REACTOME
(https://reactome.org/PathwayBrowser/) (Croftetal.2014, Fabregatetal.2018)
database. Differentially methylated (DM) pathways in HA-VTE in comparison to
SL-VTE and HAC included AP-1 transcription factor network, p1 integrin cell
surface interactions, endothelin signaling pathway, PDGF receptor signaling
pathway, VEGF signaling, Thrombin/ protease activated receptor, urokinase-type
plasminogen activator (UPA) and uPAR mediated signaling etc., which included
both hypo methylated and hyper methylated genes (supplementary table 1and2).
Apart from these, some hypo-methylated genes in HA-VTE attributed to EPO
signaling pathway, HIF-1a transcription factor network, inflammasomes, heme
biosynthesis, lipid metabolism etc. Amongst unique hyper methylated pathways
were potassium channels, toll receptor cascades, Angiopoietin receptor or Tiel
mediated signaling, e-cadherin signaling events and GABA synthesis etc (Figure
5).

Number of DM pathways in SL-VTE was much more compared to HA-VTE.
These included pathways with both hyper- and hypo- methylated genes viz.,
adaptive immune system, AP1 transcription factor network, apoptosis, f-lintegrin
cell surface interactions, complement cascade, endothelin signaling, FGF
signaling, GABA receptor activation, hemostasis, HIF-1 o transcription factor,
complement triggering, integrin family, cell surface interactions, platelet signaling,
VEGF signaling ,thrombin /protease-activated receptor signaling pathway etc.
Significant unique pathways with only hypo-methylated genes in SL-VTE
included NOS activation and regulation, heme biosynthesis, NCAM1 inteactions,
platelet degranulation and response to elevated platelet cytosolic Ca?*.On the other
hand, uniquely hypermethylated pathways included Ca?* activated K* channels,
extrinsic pathway, fatty acid activation, FGFR ligand binding and activation,
formation of fibrin clot, GP1b-IX-V activation signaling, inflammasomes, platelet
activation, NLRP3 inflammasome etc (Figure 5). (Supplementary table 3).

Gene Enrichment analysis of hypo-methylated and hyper-methylatedgenes

The differentially methylated gene lists obtained for sea levelVTE patients and
high atitude VTE patients were subjected to gene ontology analysis using
ShinyGOv.0.61 (http://bioinformatics.sdstate.edu/go/). Most significantly enriched
biological pathways included cell communication, signa ltransduction, cell
growth/maintenance, transport, metabolism, Immune response, cell adhesion,
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apoptosis, lipid metabolism, regulation of cell cycle etc. Topbiological processes
enriched in HA-VTE and SL-VTE group are depicted in Figure 6. Enriched
cellular component included Plasma membrane, Cytoplasm, nucleus, exosomes,
cell surface, centrosome, mitochondrian, actin cytoskeleton, lysosome, Voltage-
gated potassum channel complex etc.; whereas molecular function included Cell
adhesion molecule activity, Transporter activity, G-protein coupled receptor
activity. Transcription factor activity, Receptor signaling complex scaffold
activity, Voltage-gated ion channel activity, Oxido reductase activity, Calcium ion
binding, Cyto skeletal anchoring activity Protein serine/threonine kinase activity.

Discussion

Aberrant DNA methylation on promoter affects gene expression and hinders
promoter accessibility, and has been linked to multiple pathologies like variety of
cancers, skin diseases, and cardiovascular diseases (Jelinek et al., 2011, Wang et
al. 2018). Increased risk of thrombotic complications in high altitude climbers has
been well documented. High altitude environment resulting in a hyper coagulabe
state, is consdered as an independent risk factor for VTE development (Kumar
2006, Damodar et al. 2018, Dutta et a. 2018). The rear every limited studies so far
on DNA methylation in humans at high altitude (Childebayeva et al. 2019, Basak
et al. 2017). Also, very scanty literature is available on methylation change during
VTE event and blood coagulation (Aiss et al.2014, Ward-caviness et a. 2018,
Noro et a. 2019). Global DNA methylation signatures in HA-VTE have not been
studied so far! Infact, exact etiopathology of VTE inhumans in terms of epigenetic
modulation (methylation) has not been elucidated. There are two separate linesof
evidence; oneis that hypoxic environment induces hyper-coagulation and another
proves that hypoxia is associated with DNA methylation. However despite this,
the interrelated studies on role of hypoxia induced DNA methylation changes in
human VTE patients have not been documented so far. In the present study, we
attempted to understand the role of methylation in high altitude hypoxia induced
VTE.

The acute response to hypoxia involves changes in homeostatic regulation which
isinturn controlled by large number of genes. Epigenetic modifications are plastic
in nature and occur in response to the change in the environmental conditions
(Bollati and Baccarelli, 2010). The present study utilizes gold standard method of
sodium bisulphate sequencing technique to decipher epigenetic methylation
changes during HA-VTE event.

Differential methylation (DM) in High altitude VTE patients and Seal

level VTE patients Hypo methylationin high altitude patients

Component of hypo methylation in high altitude patients compared to sea level
patients included genes involved in cell adhesion and regulation, cell adhesion
molecule 1 (CADM1), receptor-type tyrosine-protein phosphatase kappa
(PTPRK); platelet derived growth factor (PDGFA),inflammation and immune
response, C-X-C motif chemokine ligand 12 (CXCL12), immune surveillance,
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interleukin 18 (IL18), interleukin 4 (IL4), interferon regulatory factor 4 (IRF4) and
neucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain
containing 1(NLRP1). Inflammation is reportedly higher upon exposure to high
atitude (Hartman etal.2000) and platelets play a very important role in vascular
homeostasis (Gupta et al. 2020), the hypo methylated (over-expressed) genes of
inflammation and platelets activity may play an important role in predisposition
towards HA-VTE. Apart from these, other hypo methylated genes in HAP were
Proteasome 26S Subunit, Non-ATPase 14 (PSMD14) and Cullin 1 (CUL1)
involved in ubiquitination and degradation of intra cellular proteins involved in
cell cycle regulation and signal transduction and MutS Homolog 2 (MSH2)
involved in DNA mismatch repair. Hypomethylated genes in HAP in comparison
to HAC revealed oxygen-dependent coproporp hyrinogen-111  oxidase,
mitochondrial gene (CPOX), involved in biosynthetic pathway of heme ,which
might be in response to hypoxic conditions (Grek et a. 2011); N-Myc
downstream-regulated gene 1 protein (NDRG1) which belongs to alpha/beta
hydrolase and isreportedly involved in cell growth, immune and stress response
and also negatively correlated with cancer progression (Fangetal. 2014, Kovacevic
et a. 2016); and sphingomyelin synthase 1(SGMS1). The differential methylation
in the said genes was mostly observed in the intergenic region and intronic
regions, except I1L18 with methylation in promoter region.

Hyper methylation in High altitude patients

Hyper methylated genes in HAP in comparison to SLP included a transcription
factor (GSC), Ribosomal protein S6 kinase alphal gene (RPS6KAL), which is a
serine/threonine-protein kinase which signals and mediates mitogenic and stress
induced activation of transcription factor. Amongst the other hyper-methylated
genes were, transforming growth factor beta-2 (TGFB2), trans membrane receptor
(NOTCH2), potassium voltage gated channel (KCND?2), Toll-like receptor (TLR4)
which activates intracellular signaling of NFkB, Rho-associated protein kinase
(ROCK1) which is a key regulator of actin—myosin contraction, stability and cell
polarity and zinc finger protein (ZFY VE16). Other hyper-methylated genes in high
atitude patients in comparison to respective controls (HAC) were cell adhesion
molecule (Cadherin, CDH5), ETS domain transcription factor (ELF1), Kalirin
(KALRN), which is involved in inducing various signaling mechanisms, Neuro
trophic tyrosine kinase, receptor type2 (NTRK?2), Srckinase (SKAP2), which plays
arolein activation of immune system, t-SNARE (SNAP25) involved in molecular
regulation of neuro transmitter release and trans membrane serine protease
(TMPRSS2) involved in tissue remodeling, blood coagulation and inflammatory
response etc. Except for the KALRN, all other hyper methylated genes in this
category showed DM in intergenic and intronic regions.

Hypo methylation in sea level patients

The percentage of DM was much higher in case of sea level patients compared to
high altitude patients. The differentially methylated genes belonged to various
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biological pathways (as mentioned in supplementary table 3), we have enlisted 41
hypo-methylated and 76 hyper-methylated genes amongst them which were found
to be significantly involved in multiple pathways.

Amongst the 41 hypo methylated genes, a large number of genes belonged to (1)
immune response pathway such as ELMOL (engulfment and cell motility protein
1), IL18 (interleukin 18,apro-inflmmatory cytokine involved in T-helper cell,
natural killer cell and cell immune response), MBL2 (mannose Binding lectin 2,
an important element of innate immune response), RIPK2 (receptor-interacting
serine/threonine-protein kinase involved in innate and adaptive immune response),
ICOS (Inducible T-cell co-stimulator, an immune check point protein belonging to
CD28 and CTLA-4 cel surface receptor family); (2) Transcriptional activation
like BCL9 (B-cell lumphoma 9, a transcriptional co-activator), CREM (cAMP
responsive element modulator which is involved in transcriptional response to
stress, MDFIC (MyoD family inhibitor domain-containing protein, a
transcriptional activator of repressor), MYOCD (Myo Cardin), KDM3A (Lysine
demethylase 3A, has DNA binding transcription factor activity), TCF7L2
(transcription factor 7 like 2, plays a key role in Wnt signaling pathway and
implicated in blood glucose homeostasis, RUNX1 (Runt-related transcription
factor for development of normal hematopoiesis; (3) genes involved in cell/
platelet adhesion such as CD226 (cell adhesion molecule mediating adhesion of
platelets and mega karyocytes to vascular endothelial cells), DCC (Deleted in
colorectal carcinoma, a trans membrane protein and member of immunoglobulin
super family of cell adhesion molecules, ST8S1A4 (Sialyl transferase, modulator
of adhesive properties on nCAM1); (4) membrane receptors and regulatory
proteins viz., CXCR4(C-X-C motif chemokine receptor 4, a G-protein coupled
receptor for protein ubiquitination), DUSP6 (Dual specificity phosphatase 6),
GNAL (G-protein alpha subunit), GRIP2 (Glutamate receptor interaction protein
2), PPP3R1 (protein phosphatase 3 regulatory subunit B, apha, calcium
stimulated) and PRKAR1B (cCAMP dependent protein kinase type 1-beta
regulatory protein, involved in CAMP signaling in cells). Besides these mgjor sub
classes, other differentially hypo methylated genes in this category included those
involved in maintaining cyto skeletal integrity such as COL11 Al (Collagen type
X1 Al chain, a constituent of extracellular matrix structure and playing an
important role in fibrillogenesis by controlling growth of collagen fibrils) and
TLNL(Talinl, forming connection of major cyto skeletal structures to the plasma
membrane); channel proteins such as KCNC2 (voltage gated potassium channel)
and TRPCY7 (Transient receptor potential cation channel subfamily, member 7) and
genes involved in oxidative phosphorylation like NDUFAF2 (NADPH:
ubiquinone oxireductase complex assembly factor 2, which acts as molecular
chaperon for mitochondria complex | and has role in electron transfer from NADH
to the respiratory chain and CPOX (Copropor phyrinogen-111 oxidase, which is a
mitochrondrial enzyme involved in production of heme molecule). Histidine-rich
glycoprotein (HRG) gene was also found to be hypo methylated. This genes has
diverse functions, it binds to number of ligands such as heme, heparin,


https://doi.org/10.1101/2022.03.27.22272933
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2022.03.27.22272933; this version posted April 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

thrombospondin, plasminogen etc and regul ates processes such as immune system,
pathogen clearance, cell adhesion, angiogenesis, coagulation and fibrinolysis.
Ancther interesting hypo-methylated gene was IQGAPL (IQ Motif containing
GTPase activating proteinl), which interacts with components of cytoskeletal
system, cell adhesion molecules and also with several signaling molecules to
regulate cell morphology and motility. KDM3 A gene was hypo methylated in
exonic region, CD226 in promoter region and al others in respective intergenic
and intronic regions.

Hype rmethylation in sea level patients

Several transcription factors were hyper-methylated in sea level patients such as
BCL3 (B-cel lymphoma 3 encoded protein, a transcriptional co-activator),
DDX58 (Dead box family of RNA helicases, a transcriptional repressor), ETV1
(ETS variant transcription factor 1), PBX1 (pre-B-cell leukemia transcription
factor 1), TLE1 (transducin-like enhancer protein 1, a transcriptional co-repressor
that binds to a number of transcription factors like NFkB) and SPI1 (transcription
factor PU.1, atranscriptional activator involved in activation of macrophagesor B-
cells). Although increased platelet activity and fibrinogen levels collectively
account for pro-thrombotic state (Kotwaletal.2007), many genes involved in
platelet activation and coagulation pathway showed hyper methylation (down-
regulation) including CD36 (collagen typel receptor or thrombospondin receptor,
a major glycoprotein of platelet surface), F3, also known as tissue factor (TF)
which facilitates blood coagulation by forming a complex with circulating factor
Vllor Vlla, which in turn activates factor X (Owens et al. 2010), PDGFA and
PDGFRA (Platelet-derived growth factor -subunit A and —receptor alpha,
respectively), TFPI (tissue factor pathway inhibitor, a kunitz-type serine protease
inhibitor that regulates TF-dependent blood coagulation) and MASP1 (Mannose-
binding lectin associated serine protease 1) that functions as a component of lectin
pathway of complement activation, complement pathway and plays an essential
role in immune response and coagulation) Hyper methylation in tissue factor F3 is
somehow counter balanced by hyper methylation in TFPI. Hypermethylated genes
SLP also included genes encoding for proteins involved in cell adhesion or focal
adhesion such as ARAP2 (ArfGAP with Rho GAP domain), CD44 (a cell surface
glycoprotein), CDH2 (Cadherin 2, another cell surface glycoprotein), DSG1
(Desmoglin 1- cadherin-like transmembrane glycoprotein that form a maor
component of desmosomes), LPP (Lipoma-preferred partner, playing a structural
role at the sites of cell adhesion thus maintain cell shape and moility), PAK1
(Serine/threonine kinase, involved in intracellular signaling and plays an important
role in cytoskeleton dynamics and cell adhesion)and SORBS1 (Sorbin 1 and SH3
domain containing protein involved in formation of actin stress fibers and focal
adhesion). Hyper methylated growth factors included FGF10 (fibroblast growth
factor10), GAB2 (growth factor receptor bound protein 2), GF1(growth factor
independencel, a transcriptional repressor), IGF1(insulin like growth factor 1),
IGF1R (insulin like growth factor receptor), TGB1 (transforming growth factor
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betal), TGFBR3 (transforming growth factor beta receptor 3). Hyper methylation
of genes involved in immune-regulatory and inflammatory processes included
CCL26 (C-C motif chemokine lignad L6), CD200R1 (C-C motif chemokine liand
L6) and PRDM1 (PR domain zinc finger protein 1, a transcription factor that
mediates innate and adaptive immune response). Other genes of interest in this
category included EDN1 (endothelin 1), which is an endothelium derived
vasoconstrictor and EGLN3(Prolyl hydroxylase), which is an important isozyme
in limiting physiological activation of Hypoxia inducible factor (HIF) in hypoxia.
Besides DDX58 gene which showed hypermethylationin 3'-region, all others were
hypermethylated in intronic and intergenic regions.

Our findings give global DNA methylation patterns in Indian population, in an
event of venous thrombosis for the first time, both at high altitude as well as sea
level. Further studies with more number of samples would helpful in validating
and generalizing present findings.

Summary

To the best of our knowledge, hypoxia as encountered at high altitude and
associated venous thrombosis phenotype, has never been discussed and
appreciated in perspective of DNA methylation. Present study identified
differential hypo methylation in cell adhesion and inflammation genes and hype
rmethylation of certain transcription factors and channel proteins in high altitude
VTE patients. A distinct pattern of methylation was observed in HA-VTE patients
and SL-VTE patients. Overall, the work primarily provides robust a a
demonstrating that hypoxia reinforces global methylation events.

Limitation of the study

Blood samples from subjects with mixed ethnic backgrounds, have been collected
at different time points, as and when available. The methylation pattern of an
individual changes with change in altitude, environment and even lifestyle habits.
In the present study, these factors have not been taken into account. Also, due to
technical reasons/sample unavailability, we could study only a limited number of
subjectsin each group.
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Collection of blood samples: lsolation of DNA using QlAamp DNA Blood Midi Kit

_—

Qualitative and quantitative analysis of DNA

DNA fragmentation and library preparation: Ligation to adaptors that contain Sm(s

Bisulfite sequencing: Fragmented DNA is treated with Sodium bisufite: to convert all un-methyated cytosines to uracil.
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Sequencing was done using lllumina Hiseq: 150nt Paired end sequencing

150 bp paired end raw reads from lllumina Hiseq Sequencer were quality checked for low quality bases: Using Perl
Scripts
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Methylation state of all cytosine positions are read and inferred
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Hyper-and Hypo- methylated genes: Comparative study of groups, Pathyway analysis, Gene Enrichment analysis
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