ABSTRACT
Increasing age is the main risk factor for chronic lung diseases (CLD) including idiopathic pulmonary fibrosis (IPF). Halting or reversing progression of IPF remains an unmet clinical need due to limited knowledge of underlying mechanisms. In particular, the contribution of the endothelium to ageing in human lung under physiological conditions and in IPF remains insufficiently understood. In this study, we analysed heterogeneity of endothelium in physiologically ageing human lung and its alterations in IPF. We conducted a comprehensive in silico analysis of scRNAseq profiles of human lung tissues from older healthy donors and age-matched IPF patients (n=9 for each group) by integrating datasets from two independent cohorts. We generated a single-cell map of the ageing human lung and identified 17 subpopulations of ageing endothelium (12 for blood and 5 for lymphatic vessels, including 4 “de-differentiated”), with distinct transcriptional profiles, specific gene expression signatures and percentage contributions, revealing previously underappreciated extent of heterogeneity. In IPF lung, the balance of different endothelial sub-types was significantly altered both in terms of cell numbers and gene expression patterns, identifying disease-relevant subpopulations and transcriptional changes associated with specific signalling pathways and cellular processes. These findings reveal a previously unrecognised phenomenon of ageing human lung endothelium re-programming towards an “IPF endothelium” state, suggesting potential avenues for therapeutic management or biomarker discovery for diagnostics or prognostics of IPF. Our study creates a conceptual framework for appreciating the heterogeneity of ageing endothelium and its alterations in CLDs and diseases associated with fibrosis in other organs, including lymphoedema and cancer.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported by Kate Garthwaite Pulmonary Fibrosis Research Fund, the Endothelial Cell Research Fund and University of Hull PhD Scholarships Fund for Health Global Data Pipeline (Health*GDP) for biomedical research and clinical applications cluster.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
IPF samples and age-matched donor samples in cohort 1 were selected from the gene expression omnibus (GEO) GSE122960_RAW and in cohort 2 - from GSE136831_RAW
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
↵* Authors share senior authorship.
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.