Mining for Health: A Comparison of Word Embedding Methods for Analysis of EHRs Data
Emily Getzen, Yucheng Ruan, Lyle Ungar, Qi Long
doi: https://doi.org/10.1101/2022.03.05.22271961
Emily Getzen
1University of Pennsylvania, Philadelphia, PA 19104
Yucheng Ruan
1University of Pennsylvania, Philadelphia, PA 19104
Lyle Ungar
1University of Pennsylvania, Philadelphia, PA 19104
Qi Long
1University of Pennsylvania, Philadelphia, PA 19104
Data Availability
All data produced in the present study are available upon reasonable request to the authors
Posted March 08, 2022.
Mining for Health: A Comparison of Word Embedding Methods for Analysis of EHRs Data
Emily Getzen, Yucheng Ruan, Lyle Ungar, Qi Long
medRxiv 2022.03.05.22271961; doi: https://doi.org/10.1101/2022.03.05.22271961
Subject Area
Subject Areas
- Addiction Medicine (382)
- Allergy and Immunology (699)
- Anesthesia (190)
- Cardiovascular Medicine (2837)
- Dermatology (243)
- Emergency Medicine (427)
- Epidemiology (12544)
- Forensic Medicine (10)
- Gastroenterology (801)
- Genetic and Genomic Medicine (4418)
- Geriatric Medicine (401)
- Health Economics (712)
- Health Informatics (2845)
- Health Policy (1046)
- Hematology (373)
- HIV/AIDS (893)
- Medical Education (413)
- Medical Ethics (114)
- Nephrology (461)
- Neurology (4173)
- Nursing (220)
- Nutrition (615)
- Oncology (2199)
- Ophthalmology (623)
- Orthopedics (254)
- Otolaryngology (317)
- Pain Medicine (266)
- Palliative Medicine (81)
- Pathology (485)
- Pediatrics (1171)
- Primary Care Research (482)
- Public and Global Health (6764)
- Radiology and Imaging (1487)
- Respiratory Medicine (897)
- Rheumatology (430)
- Sports Medicine (368)
- Surgery (472)
- Toxicology (57)
- Transplantation (200)
- Urology (173)