Abstract
COVID-19, a severe acute respiratory syndrome aggressively spread among global populations in just a few months. Since then, it has had four dominant variants (Alpha, Beta, Gamma and Delta) that are far more contagious than original. Accurate and timely diagnosis of COVID-19 is critical for analysis of damage to lungs, treatment, as well as quarantine management [7]. CT, MRI or X-rays image analysis using deep learning provide an efficient and accurate diagnosis of COVID-19 that could help to counter its outbreak. With the aim to provide efficient multi-class COVID-19 detection, recently, COVID-19 Detection challenge using X-ray is organized [12]. In this paper, the late-fusion of features is extracted from pre-trained various convolutional neural networks and fine-tuned these models using the challenge dataset. The DensNet201 with Adam optimizer and EffecientNet-B3 are fine-tuned on the challenge dataset and ensembles the features to get the final prediction. Besides, we also considered the test time augmentation technique after the late-ensembling approach to further improve the performance of our proposed solution. Evaluation on Chest XR COVID-19 showed that our model achieved overall accuracy is 95.67%. We made the code is publicly available1. The proposed approach was ranked 6th in Chest XR COVID-19 detection Challenge [1].
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
The study did not receive any funding.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
Email: {engr.qayyum{at}gmail.com, mirpak{at}gmail.com, moona.mazher{at}gmail.com}, domenec.puig{at}urv.cat
↵1 https://github.com/RespectKnowledge/Chest-XR-COVID-19-detectionDeep - Learning
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, The University of Edinburgh, University of Washington, and Vrije Universiteit Amsterdam.