Abstract
Successive waves of infection by SARS-CoV-2 have left little doubt that this virus will transition to an endemic disease 1,2. Projections of the endemic seasonality of SARS-CoV-2 transmission are crucial to informed public health policy 3. Such projections are not only essential to well-timed interventions and the preparation of healthcare systems for synchronous surges with other respiratory viruses 4, but also to the elimination of seasonality as a confounder in the identification of surges that are occurring due to viral evolution, changes in host immunity, or other non-seasonal factors. However, the less than two-year duration of SARS-CoV-2 circulation, pandemic dynamics, and heterogeneous implementation of interventions have grievously complicated evaluations of its seasonality 5. Here we estimate the impending endemic seasonality of SARS-CoV-2 in global population centers via a novel phylogenetic ancestral and descendent states approach 6 that leverages long-term data on the incidence of circulating coronaviruses. Our results validate a major concern that endemic COVID-19 will typically surge coincident with other high-morbidity and -mortality respiratory virus infections such as influenza and RSV 7. In temperate locales in the Northern Hemisphere, we identify spatiotemporal surges of incidences that range from October through January in New York to January through March in Yamagata, Japan. This knowledge of likely spatiotemporal surges of COVID-19 is fundamental to optimal timing of public health interventions that anticipate the impending endemicity of this disease and mitigate SARS-CoV-2 transmission.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
National Science Foundation of the United States of America RAPID 2031204 (JPT and AD), NSF Expeditions CCF 1918784 (JPT and APG), and support from the University of North Carolina, Charlotte to AD.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
Data and materials availability All data, inferred phylogenetic trees, imputed monthly proportions, and code underlying this study are publicly available on Zenodo: DOI:10.5281/zenodo.5274735.