Abstract
New COVID-19 variants, either of higher viral load such as delta or higher contagiousness like omicron, can lead to higher airborne transmission than historical strains. This paper highlights their implications for health policies, based on a clear analytical understanding and modeling of the airborne contamination paths, of the dose following exposure, and the importance of the counting unit for pathogens, itself linked to the dose-response law. Using the counting unit of Wells, i.e. the quantum of contagium, we develop the conservation equation of quanta which allows deriving the value of the quantum concentration at steady state for a well-mixed room. The link with the monitoring concentration of carbon dioxide is made and used for a risk analysis of a variety of situations for which we collected CO2 time-series observations. The main conclusions of these observations are that 1) the present norms of ventilation, are both insufficient and not respected, especially in a variety of public premises, leading to high risk of contamination and that 2) air can often be considered well-mixed. Finally, we insist that public health policy in the field of airborne transmission should be based on a multi parameter analysis such as the time of exposure, the quantum production rate, mask wearing and the infector proportion in the population in order to evaluate the risk, considering the whole complexity of dose evaluation. Recognizing airborne transmission requires thinking in terms of time of exposure rather than in terms of proximal distance.
Highlights
Relative airborne risk assessment following variant viral load and contagiousness
Indoor analytical risk assessment including absence of ventilation
Adequacy of the present norms of ventilation to Covid-19 pandemic
Observation of non-compliance to standards concerning CO2 Indoor Air Quality
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study did not receive any funding
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
This second version is composed of a main document that contains the basic data available in the initial version with slight differences in the parameters choices. Several details have been moved in a supplementary material (SM) section at the end of the file. Further details, not indicated in the initial version, are also available in the SM section. Conclusions remain the same as in the initial version.
Data Availability
All data produced in the present work are contained in the manuscript